Entropy of scalar reaction-diffusion equations
Mathematica Bohemica, Tome 139 (2014) no. 4, pp. 597-605.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider scalar reaction-diffusion equations on bounded and extended domains, both with the autonomous and time-periodic nonlinear term. We discuss the meaning and implications of the ergodic Poincaré-Bendixson theorem to dynamics. In particular, we show that in the extended autonomous case, the space-time topological entropy is zero. Furthermore, we characterize in the extended nonautonomous case the space-time topological and metric entropies as entropies of a pair of commuting planar homeomorphisms.
DOI : 10.21136/MB.2014.144137
Classification : 35B40, 37A35, 37B40, 37L30
Keywords: reaction-diffusion equation; attractor; invariant measure; entropy; Poincaré-Bendixson theorem
@article{10_21136_MB_2014_144137,
     author = {Slijep\v{c}evi\'c, Sini\v{s}a},
     title = {Entropy of scalar reaction-diffusion equations},
     journal = {Mathematica Bohemica},
     pages = {597--605},
     publisher = {mathdoc},
     volume = {139},
     number = {4},
     year = {2014},
     doi = {10.21136/MB.2014.144137},
     mrnumber = {3306850},
     zbl = {06433684},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144137/}
}
TY  - JOUR
AU  - Slijepčević, Siniša
TI  - Entropy of scalar reaction-diffusion equations
JO  - Mathematica Bohemica
PY  - 2014
SP  - 597
EP  - 605
VL  - 139
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144137/
DO  - 10.21136/MB.2014.144137
LA  - en
ID  - 10_21136_MB_2014_144137
ER  - 
%0 Journal Article
%A Slijepčević, Siniša
%T Entropy of scalar reaction-diffusion equations
%J Mathematica Bohemica
%D 2014
%P 597-605
%V 139
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144137/
%R 10.21136/MB.2014.144137
%G en
%F 10_21136_MB_2014_144137
Slijepčević, Siniša. Entropy of scalar reaction-diffusion equations. Mathematica Bohemica, Tome 139 (2014) no. 4, pp. 597-605. doi : 10.21136/MB.2014.144137. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144137/

Cité par Sources :