Derived cones to reachable sets of a nonlinear differential inclusion
Mathematica Bohemica, Tome 139 (2014) no. 4, pp. 567-575.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a nonlinear differential inclusion defined by a set-valued map with nonconvex values and we prove that the reachable set of a certain variational inclusion is a derived cone in the sense of Hestenes to the reachable set of the initial differential inclusion. In order to obtain the continuity property in the definition of a derived cone we use a continuous version of Filippov's theorem for solutions of our differential inclusion. As an application, in finite dimensional spaces, we obtain a sufficient condition for local controllability along a reference trajectory.
DOI : 10.21136/MB.2014.144134
Classification : 34A60, 93B03, 93C15
Keywords: derived cone; $m$-dissipative operator; local controllability
@article{10_21136_MB_2014_144134,
     author = {Cernea, Aurelian},
     title = {Derived cones to reachable sets of a nonlinear differential inclusion},
     journal = {Mathematica Bohemica},
     pages = {567--575},
     publisher = {mathdoc},
     volume = {139},
     number = {4},
     year = {2014},
     doi = {10.21136/MB.2014.144134},
     mrnumber = {3306847},
     zbl = {06433681},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144134/}
}
TY  - JOUR
AU  - Cernea, Aurelian
TI  - Derived cones to reachable sets of a nonlinear differential inclusion
JO  - Mathematica Bohemica
PY  - 2014
SP  - 567
EP  - 575
VL  - 139
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144134/
DO  - 10.21136/MB.2014.144134
LA  - en
ID  - 10_21136_MB_2014_144134
ER  - 
%0 Journal Article
%A Cernea, Aurelian
%T Derived cones to reachable sets of a nonlinear differential inclusion
%J Mathematica Bohemica
%D 2014
%P 567-575
%V 139
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144134/
%R 10.21136/MB.2014.144134
%G en
%F 10_21136_MB_2014_144134
Cernea, Aurelian. Derived cones to reachable sets of a nonlinear differential inclusion. Mathematica Bohemica, Tome 139 (2014) no. 4, pp. 567-575. doi : 10.21136/MB.2014.144134. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144134/

Cité par Sources :