On optimal matching measures for matching problems related to the Euclidean distance
Mathematica Bohemica, Tome 139 (2014) no. 4, pp. 553-566.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We deal with an optimal matching problem, that is, we want to transport two measures to a given place (the target set) where they will match, minimizing the total transport cost that in our case is given by the sum of two different multiples of the Euclidean distance that each measure is transported. We show that such a problem has a solution with an optimal matching measure supported in the target set. This result can be proved by an approximation procedure using a $p$-Laplacian system. We prove that any optimal matching measure for this problem is supported on the boundary of the target set when the two multiples that affect the Euclidean distances involved in the cost are different. Moreover, we present simple examples showing uniqueness or non-uniqueness of the optimal measure.
DOI : 10.21136/MB.2014.144132
Classification : 45G10, 49J20, 49J45, 49Q20
Keywords: mass transport; Monge-Kantorovich problem; $p$-Laplacian equation
@article{10_21136_MB_2014_144132,
     author = {Maz\'on, Jos\'e Manuel and Rossi, Julio Daniel and Toledo, Juli\'an},
     title = {On optimal matching measures for matching problems related to the {Euclidean} distance},
     journal = {Mathematica Bohemica},
     pages = {553--566},
     publisher = {mathdoc},
     volume = {139},
     number = {4},
     year = {2014},
     doi = {10.21136/MB.2014.144132},
     mrnumber = {3306846},
     zbl = {06433680},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144132/}
}
TY  - JOUR
AU  - Mazón, José Manuel
AU  - Rossi, Julio Daniel
AU  - Toledo, Julián
TI  - On optimal matching measures for matching problems related to the Euclidean distance
JO  - Mathematica Bohemica
PY  - 2014
SP  - 553
EP  - 566
VL  - 139
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144132/
DO  - 10.21136/MB.2014.144132
LA  - en
ID  - 10_21136_MB_2014_144132
ER  - 
%0 Journal Article
%A Mazón, José Manuel
%A Rossi, Julio Daniel
%A Toledo, Julián
%T On optimal matching measures for matching problems related to the Euclidean distance
%J Mathematica Bohemica
%D 2014
%P 553-566
%V 139
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144132/
%R 10.21136/MB.2014.144132
%G en
%F 10_21136_MB_2014_144132
Mazón, José Manuel; Rossi, Julio Daniel; Toledo, Julián. On optimal matching measures for matching problems related to the Euclidean distance. Mathematica Bohemica, Tome 139 (2014) no. 4, pp. 553-566. doi : 10.21136/MB.2014.144132. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.144132/

Cité par Sources :