Dynamics in a discrete predator-prey system with infected prey
Mathematica Bohemica, Tome 139 (2014) no. 3, pp. 511-534.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, a discrete version of continuous non-autonomous predator-prey model with infected prey is investigated. By using Gaines and Mawhin's continuation theorem of coincidence degree theory and the method of Lyapunov function, some sufficient conditions for the existence and global asymptotical stability of positive periodic solution of difference equations in consideration are established. An example shows the feasibility of the main results.
DOI : 10.21136/MB.2014.143939
Classification : 34C25, 34K20, 39A23, 39A30, 92D25
Keywords: predator-prey model; periodic solution; topological degree; global asymptotic stability
@article{10_21136_MB_2014_143939,
     author = {Xu, Changjin and Li, Peiluan},
     title = {Dynamics in a discrete predator-prey system with infected prey},
     journal = {Mathematica Bohemica},
     pages = {511--534},
     publisher = {mathdoc},
     volume = {139},
     number = {3},
     year = {2014},
     doi = {10.21136/MB.2014.143939},
     mrnumber = {3269371},
     zbl = {06391468},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143939/}
}
TY  - JOUR
AU  - Xu, Changjin
AU  - Li, Peiluan
TI  - Dynamics in a discrete predator-prey system with infected prey
JO  - Mathematica Bohemica
PY  - 2014
SP  - 511
EP  - 534
VL  - 139
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143939/
DO  - 10.21136/MB.2014.143939
LA  - en
ID  - 10_21136_MB_2014_143939
ER  - 
%0 Journal Article
%A Xu, Changjin
%A Li, Peiluan
%T Dynamics in a discrete predator-prey system with infected prey
%J Mathematica Bohemica
%D 2014
%P 511-534
%V 139
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143939/
%R 10.21136/MB.2014.143939
%G en
%F 10_21136_MB_2014_143939
Xu, Changjin; Li, Peiluan. Dynamics in a discrete predator-prey system with infected prey. Mathematica Bohemica, Tome 139 (2014) no. 3, pp. 511-534. doi : 10.21136/MB.2014.143939. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143939/

Cité par Sources :