Fekete-Szegő problem for subclasses of generalized uniformly starlike functions with respect to symmetric points
Mathematica Bohemica, Tome 139 (2014) no. 3, pp. 485-509.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The authors obtain the Fekete-Szegő inequality (according to parameters $s$ and $t$ in the region $s^{2}+st+t^{2}3$, $s\neq t$ and $s+t\neq 2$, or in the region $s^{2}+st+t^{2}>3,$ $s\neq t$ and $s+t\neq 2$) for certain normalized analytic functions $f(z)$ belonging to $k\text {\rm -UST}_{\lambda ,\mu }^{n}(s,t,\gamma )$ which satisfy the condition \begin {equation*} \Re \bigg \{ \frac {(s-t)z ( D_{\lambda ,\mu }^{n}f(z))'} {D_{\lambda ,\mu }^{n}f(sz)-D_{\lambda ,\mu }^{n}f(tz)}\bigg \} >k \biggl \vert \frac {(s-t)z ( D_{\lambda ,\mu }^{n}f(z))'}{D_{\lambda ,\mu }^{n}f(sz)-D_{\lambda ,\mu }^{n}f(tz)}{-1} \biggr \vert +\gamma , \quad z\in \mathcal {U} . \end {equation*} Also certain applications of the main result a class of functions defined by the Hadamard product (or convolution) are given. As a special case of this result, the Fekete-Szegő inequality for a class of functions defined through fractional derivatives is obtained.
DOI : 10.21136/MB.2014.143938
Classification : 30C45, 30C50
Keywords: Fekete-Szeg\H {o} problem; Sakaguchi function; uniformly starlike function; symmetric point
@article{10_21136_MB_2014_143938,
     author = {Yagmur, Nihat and Orhan, Halit},
     title = {Fekete-Szeg\H{o} problem for subclasses of generalized uniformly starlike functions with respect to symmetric points},
     journal = {Mathematica Bohemica},
     pages = {485--509},
     publisher = {mathdoc},
     volume = {139},
     number = {3},
     year = {2014},
     doi = {10.21136/MB.2014.143938},
     mrnumber = {3269370},
     zbl = {06391467},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143938/}
}
TY  - JOUR
AU  - Yagmur, Nihat
AU  - Orhan, Halit
TI  - Fekete-Szegő problem for subclasses of generalized uniformly starlike functions with respect to symmetric points
JO  - Mathematica Bohemica
PY  - 2014
SP  - 485
EP  - 509
VL  - 139
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143938/
DO  - 10.21136/MB.2014.143938
LA  - en
ID  - 10_21136_MB_2014_143938
ER  - 
%0 Journal Article
%A Yagmur, Nihat
%A Orhan, Halit
%T Fekete-Szegő problem for subclasses of generalized uniformly starlike functions with respect to symmetric points
%J Mathematica Bohemica
%D 2014
%P 485-509
%V 139
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143938/
%R 10.21136/MB.2014.143938
%G en
%F 10_21136_MB_2014_143938
Yagmur, Nihat; Orhan, Halit. Fekete-Szegő problem for subclasses of generalized uniformly starlike functions with respect to symmetric points. Mathematica Bohemica, Tome 139 (2014) no. 3, pp. 485-509. doi : 10.21136/MB.2014.143938. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143938/

Cité par Sources :