Cauchy problem for the complex Ginzburg-Landau type Equation with $L^{p}$-initial data
Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 353-361.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper gives the local existence of mild solutions to the Cauchy problem for the complex Ginzburg-Landau type equation $$ \dfrac {\partial u}{\partial t} -(\lambda +{\rm i} \alpha )\Delta u +(\kappa +{\rm i} \beta )|u|^{q-1}u-\gamma u=0 $$ in $\mathbb {R}^{N}\times (0,\infty )$ with $L^{p}$-initial data $u_{0}$ in the subcritical case ($1\leq q 1+2p/N$), where $u$ is a complex-valued unknown function, $\alpha $, $\beta $, $\gamma $, $\kappa \in \mathbb {R}$, $\lambda >0$, $p>1$, ${\rm i} =\sqrt {-1}$ and $N\in \mathbb {N}$. The proof is based on the $L^{p}$-$L^{q}$ estimates of the linear semigroup $\{\exp (t(\lambda +{\rm i} \alpha )\Delta )\}$ and usual fixed-point argument.
DOI : 10.21136/MB.2014.143860
Classification : 35A01, 35Q55, 35Q56
Keywords: local existence; complex Ginzburg-Landau equation
@article{10_21136_MB_2014_143860,
     author = {Shimotsuma, Daisuke and Yokota, Tomomi and Yoshii, Kentarou},
     title = {Cauchy problem for the complex {Ginzburg-Landau} type {Equation} with $L^{p}$-initial data},
     journal = {Mathematica Bohemica},
     pages = {353--361},
     publisher = {mathdoc},
     volume = {139},
     number = {2},
     year = {2014},
     doi = {10.21136/MB.2014.143860},
     mrnumber = {3238845},
     zbl = {06362264},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143860/}
}
TY  - JOUR
AU  - Shimotsuma, Daisuke
AU  - Yokota, Tomomi
AU  - Yoshii, Kentarou
TI  - Cauchy problem for the complex Ginzburg-Landau type Equation with $L^{p}$-initial data
JO  - Mathematica Bohemica
PY  - 2014
SP  - 353
EP  - 361
VL  - 139
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143860/
DO  - 10.21136/MB.2014.143860
LA  - en
ID  - 10_21136_MB_2014_143860
ER  - 
%0 Journal Article
%A Shimotsuma, Daisuke
%A Yokota, Tomomi
%A Yoshii, Kentarou
%T Cauchy problem for the complex Ginzburg-Landau type Equation with $L^{p}$-initial data
%J Mathematica Bohemica
%D 2014
%P 353-361
%V 139
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143860/
%R 10.21136/MB.2014.143860
%G en
%F 10_21136_MB_2014_143860
Shimotsuma, Daisuke; Yokota, Tomomi; Yoshii, Kentarou. Cauchy problem for the complex Ginzburg-Landau type Equation with $L^{p}$-initial data. Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 353-361. doi : 10.21136/MB.2014.143860. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143860/

Cité par Sources :