On the eigenvalues of a Robin problem with a large parameter
Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 341-352.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the Robin eigenvalue problem $\Delta u+\lambda u=0$ in $\Omega $, ${\partial u}/{\partial \nu }+\alpha u=0$ on $\partial \Omega $ where $\Omega \subset \mathbb R^n$, $n \geq 2$ is a bounded domain and $\alpha $ is a real parameter. We investigate the behavior of the eigenvalues $\lambda _k (\alpha )$ of this problem as functions of the parameter $\alpha $. We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative $\lambda _1'(\alpha )$. Assuming that the boundary $\partial \Omega $ is of class $C^2$ we obtain estimates to the difference $\lambda _k^D-\lambda _k(\alpha )$ between the $k$-th eigenvalue of the Laplace operator with Dirichlet boundary condition in $\Omega $ and the corresponding Robin eigenvalue for positive values of $\alpha $ for every $k=1,2,\dots $.
DOI : 10.21136/MB.2014.143859
Classification : 35J05, 35P15
Keywords: Laplace operator; Robin boundary condition; eigenvalue; large parameter
@article{10_21136_MB_2014_143859,
     author = {Filinovskiy, Alexey},
     title = {On the eigenvalues of a {Robin} problem with a large parameter},
     journal = {Mathematica Bohemica},
     pages = {341--352},
     publisher = {mathdoc},
     volume = {139},
     number = {2},
     year = {2014},
     doi = {10.21136/MB.2014.143859},
     mrnumber = {3238844},
     zbl = {06362263},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143859/}
}
TY  - JOUR
AU  - Filinovskiy, Alexey
TI  - On the eigenvalues of a Robin problem with a large parameter
JO  - Mathematica Bohemica
PY  - 2014
SP  - 341
EP  - 352
VL  - 139
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143859/
DO  - 10.21136/MB.2014.143859
LA  - en
ID  - 10_21136_MB_2014_143859
ER  - 
%0 Journal Article
%A Filinovskiy, Alexey
%T On the eigenvalues of a Robin problem with a large parameter
%J Mathematica Bohemica
%D 2014
%P 341-352
%V 139
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143859/
%R 10.21136/MB.2014.143859
%G en
%F 10_21136_MB_2014_143859
Filinovskiy, Alexey. On the eigenvalues of a Robin problem with a large parameter. Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 341-352. doi : 10.21136/MB.2014.143859. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143859/

Cité par Sources :