Quantum-graph vertex couplings: some old and new approximations
Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 259-267.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In 1986 P. Šeba in the classic paper considered one-dimensional pseudo-Hamiltonians containing the first derivative of the Dirac delta function. Although the paper contained some inaccuracy, it was one of the starting points in approximating one-dimension self-adjoint couplings. In the present paper we develop the above results to the case of quantum systems with complex geometry.
DOI : 10.21136/MB.2014.143853
Classification : 34B45, 34L40, 81Q35
Keywords: quantum graph; vertex coupling; singularly scaled potential
@article{10_21136_MB_2014_143853,
     author = {Manko, Stepan},
     title = {Quantum-graph vertex couplings: some old and new approximations},
     journal = {Mathematica Bohemica},
     pages = {259--267},
     publisher = {mathdoc},
     volume = {139},
     number = {2},
     year = {2014},
     doi = {10.21136/MB.2014.143853},
     mrnumber = {3238838},
     zbl = {06362257},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143853/}
}
TY  - JOUR
AU  - Manko, Stepan
TI  - Quantum-graph vertex couplings: some old and new approximations
JO  - Mathematica Bohemica
PY  - 2014
SP  - 259
EP  - 267
VL  - 139
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143853/
DO  - 10.21136/MB.2014.143853
LA  - en
ID  - 10_21136_MB_2014_143853
ER  - 
%0 Journal Article
%A Manko, Stepan
%T Quantum-graph vertex couplings: some old and new approximations
%J Mathematica Bohemica
%D 2014
%P 259-267
%V 139
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143853/
%R 10.21136/MB.2014.143853
%G en
%F 10_21136_MB_2014_143853
Manko, Stepan. Quantum-graph vertex couplings: some old and new approximations. Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 259-267. doi : 10.21136/MB.2014.143853. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143853/

Cité par Sources :