Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains
Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 231-238.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Nonlinear Schrödinger equations (NLS)$_{a}$ with strongly singular potential $a|x|^{-2}$ on a bounded domain $\Omega $ are considered. If $\Omega =\mathbb {R}^{N}$ and $a>-(N-2)^{2}/4$, then the global existence of weak solutions is confirmed by applying the energy methods established by N. Okazawa, T. Suzuki, T. Yokota (2012). Here $a=-(N-2)^{2}/4$ is excluded because $D(P_{a(N)}^{1/2})$ is not equal to $H^{1}(\mathbb R^{N})$, where $P_{a(N)}:=-\Delta -(N-2)^{2}/(4|x|^{2})$ is nonnegative and selfadjoint in $L^{2}(\mathbb R^{N})$. On the other hand, if $\Omega $ is a smooth and bounded domain with $0\in \Omega $, the Hardy-Poincaré inequality is proved in J. L. Vazquez, E. Zuazua (2000). Hence we can see that $H_{0}^{1}(\Omega )\subset D(P_{a(N)}^{1/2}) \subset H^{s}(\Omega )$ ($s1$). Therefore we can construct global weak solutions to (NLS)$_{a}$ on $\Omega $ by the energy methods.
DOI : 10.21136/MB.2014.143851
Classification : 35A01, 35A23, 35D30, 35Q40, 35Q55, 81Q15
Keywords: energy method; nonlinear Schrödinger equation; inverse-square potential; Hardy-Poincaré inequality
@article{10_21136_MB_2014_143851,
     author = {Suzuki, Toshiyuki},
     title = {Critical case of nonlinear {Schr\"odinger} equations with inverse-square potentials on bounded domains},
     journal = {Mathematica Bohemica},
     pages = {231--238},
     publisher = {mathdoc},
     volume = {139},
     number = {2},
     year = {2014},
     doi = {10.21136/MB.2014.143851},
     mrnumber = {3238836},
     zbl = {06362255},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143851/}
}
TY  - JOUR
AU  - Suzuki, Toshiyuki
TI  - Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains
JO  - Mathematica Bohemica
PY  - 2014
SP  - 231
EP  - 238
VL  - 139
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143851/
DO  - 10.21136/MB.2014.143851
LA  - en
ID  - 10_21136_MB_2014_143851
ER  - 
%0 Journal Article
%A Suzuki, Toshiyuki
%T Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains
%J Mathematica Bohemica
%D 2014
%P 231-238
%V 139
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143851/
%R 10.21136/MB.2014.143851
%G en
%F 10_21136_MB_2014_143851
Suzuki, Toshiyuki. Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains. Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 231-238. doi : 10.21136/MB.2014.143851. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143851/

Cité par Sources :