On discreteness of spectrum of a functional differential operator
Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 213-229.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study conditions of discreteness of spectrum of the functional-differential operator \[ \mathcal {L} u=-u''+p(x)u(x)+\int _{-\infty }^\infty (u(x)-u(s)) {\rm d}_s r(x,s) \] on $(-\infty ,\infty )$. In the absence of the integral term this operator is a one-dimensional Schrödinger operator. In this paper we consider a symmetric operator with real spectrum. Conditions of discreteness are obtained in terms of the first eigenvalue of a truncated operator. We also obtain one simple condition for discreteness of spectrum.
DOI : 10.21136/MB.2014.143850
Classification : 34K06, 34K08, 34L05
Keywords: spectrum; functional differential operator
@article{10_21136_MB_2014_143850,
     author = {Labovskiy, Sergey and Getimane, M\'ario Frengue},
     title = {On discreteness of spectrum of a functional differential operator},
     journal = {Mathematica Bohemica},
     pages = {213--229},
     publisher = {mathdoc},
     volume = {139},
     number = {2},
     year = {2014},
     doi = {10.21136/MB.2014.143850},
     mrnumber = {3238835},
     zbl = {06362254},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143850/}
}
TY  - JOUR
AU  - Labovskiy, Sergey
AU  - Getimane, Mário Frengue
TI  - On discreteness of spectrum of a functional differential operator
JO  - Mathematica Bohemica
PY  - 2014
SP  - 213
EP  - 229
VL  - 139
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143850/
DO  - 10.21136/MB.2014.143850
LA  - en
ID  - 10_21136_MB_2014_143850
ER  - 
%0 Journal Article
%A Labovskiy, Sergey
%A Getimane, Mário Frengue
%T On discreteness of spectrum of a functional differential operator
%J Mathematica Bohemica
%D 2014
%P 213-229
%V 139
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143850/
%R 10.21136/MB.2014.143850
%G en
%F 10_21136_MB_2014_143850
Labovskiy, Sergey; Getimane, Mário Frengue. On discreteness of spectrum of a functional differential operator. Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 213-229. doi : 10.21136/MB.2014.143850. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143850/

Cité par Sources :