Positive solutions of the $p$-Laplace Emden-Fowler equation in hollow thin symmetric domains
Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 145-154.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the existence of positive solutions for the $p$-Laplace Emden-Fowler equation. Let $H$ and $G$ be closed subgroups of the orthogonal group $O(N)$ such that $H \varsubsetneq G \subset O(N)$. We denote the orbit of $G$ through $x\in \mathbb {R}^N$ by $G(x)$, i.e., $G(x):=\{gx\colon g\in G \}$. We prove that if $H(x)\varsubsetneq G(x)$ for all $x\in \overline {\Omega }$ and the first eigenvalue of the $p$-Laplacian is large enough, then no $H$ invariant least energy solution is $G$ invariant. Here an $H$ invariant least energy solution means a solution which achieves the minimum of the Rayleigh quotient among all $H$ invariant functions. Therefore there exists an $H$ invariant $G$ non-invariant positive solution.
DOI : 10.21136/MB.2014.143845
Classification : 35B09, 35J20, 35J25, 35J92
Keywords: Emden-Fowler equation; group invariant solution; least energy solution; positive solution; variational method
@article{10_21136_MB_2014_143845,
     author = {Kajikiya, Ryuji},
     title = {Positive solutions of the $p${-Laplace} {Emden-Fowler} equation in hollow thin symmetric domains},
     journal = {Mathematica Bohemica},
     pages = {145--154},
     publisher = {mathdoc},
     volume = {139},
     number = {2},
     year = {2014},
     doi = {10.21136/MB.2014.143845},
     mrnumber = {3238830},
     zbl = {06362249},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143845/}
}
TY  - JOUR
AU  - Kajikiya, Ryuji
TI  - Positive solutions of the $p$-Laplace Emden-Fowler equation in hollow thin symmetric domains
JO  - Mathematica Bohemica
PY  - 2014
SP  - 145
EP  - 154
VL  - 139
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143845/
DO  - 10.21136/MB.2014.143845
LA  - en
ID  - 10_21136_MB_2014_143845
ER  - 
%0 Journal Article
%A Kajikiya, Ryuji
%T Positive solutions of the $p$-Laplace Emden-Fowler equation in hollow thin symmetric domains
%J Mathematica Bohemica
%D 2014
%P 145-154
%V 139
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143845/
%R 10.21136/MB.2014.143845
%G en
%F 10_21136_MB_2014_143845
Kajikiya, Ryuji. Positive solutions of the $p$-Laplace Emden-Fowler equation in hollow thin symmetric domains. Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 145-154. doi : 10.21136/MB.2014.143845. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143845/

Cité par Sources :