Continuum spectrum for the linearized extremal eigenvalue problem with boundary reactions
Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 137-144.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the semilinear problem with the boundary reaction \[ -\Delta u + u = 0 \quad \text {in} \ \Omega , \qquad \frac {\partial u}{\partial \nu } = \lambda f(u) \quad \text {on} \ \partial \Omega , \] where $\Omega \subset \mathbb {R}^N$, $N \ge 2$, is a smooth bounded domain, $f\colon [0, \infty ) \to (0, \infty )$ is a smooth, strictly positive, convex, increasing function which is superlinear at $\infty $, and $\lambda >0$ is a parameter. It is known that there exists an extremal parameter $\lambda ^* > 0$ such that a classical minimal solution exists for $\lambda \lambda ^*$, and there is no solution for $\lambda > \lambda ^*$. Moreover, there is a unique weak solution $u^*$ corresponding to the parameter $\lambda = \lambda ^*$. In this paper, we continue to study the spectral properties of $u^*$ and show a phenomenon of continuum spectrum for the corresponding linearized eigenvalue problem.
DOI : 10.21136/MB.2014.143844
Classification : 35J20, 35J25, 35J65, 35P05
Keywords: continuum spectrum; extremal solution; boundary reaction
@article{10_21136_MB_2014_143844,
     author = {Takahashi, Futoshi},
     title = {Continuum spectrum for the linearized extremal eigenvalue problem with boundary reactions},
     journal = {Mathematica Bohemica},
     pages = {137--144},
     publisher = {mathdoc},
     volume = {139},
     number = {2},
     year = {2014},
     doi = {10.21136/MB.2014.143844},
     mrnumber = {3238829},
     zbl = {06362248},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143844/}
}
TY  - JOUR
AU  - Takahashi, Futoshi
TI  - Continuum spectrum for the linearized extremal eigenvalue problem with boundary reactions
JO  - Mathematica Bohemica
PY  - 2014
SP  - 137
EP  - 144
VL  - 139
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143844/
DO  - 10.21136/MB.2014.143844
LA  - en
ID  - 10_21136_MB_2014_143844
ER  - 
%0 Journal Article
%A Takahashi, Futoshi
%T Continuum spectrum for the linearized extremal eigenvalue problem with boundary reactions
%J Mathematica Bohemica
%D 2014
%P 137-144
%V 139
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143844/
%R 10.21136/MB.2014.143844
%G en
%F 10_21136_MB_2014_143844
Takahashi, Futoshi. Continuum spectrum for the linearized extremal eigenvalue problem with boundary reactions. Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 137-144. doi : 10.21136/MB.2014.143844. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143844/

Cité par Sources :