A new error estimate for a fully finite element discretization scheme for parabolic equations using Crank-Nicolson method
Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 113-124.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Finite element methods with piecewise polynomial spaces in space for solving the nonstationary heat equation, as a model for parabolic equations are considered. The discretization in time is performed using the Crank-Nicolson method. A new a priori estimate is proved. Thanks to this new a priori estimate, a new error estimate in the discrete norm of $\mathcal {W}^{1,\infty }(\mathcal {L}^2)$ is proved. An $\mathcal {L}^\infty (\mathcal {H}^1)$-error estimate is also shown. These error estimates are useful since they allow us to get second order time accurate approximations for not only the exact solution of the heat equation but also for its first derivatives (both spatial and temporal). Even the proof presented in this note is in some sense standard but the stated $\mathcal {W}^{1,\infty }(\mathcal {L}^2)$-error estimate seems not to be present in the existing literature of the Crank-Nicolson finite element schemes for parabolic equations.
DOI : 10.21136/MB.2014.143841
Classification : 35K05, 35K15, 35K20, 65M15, 65M60, 65N15, 65N30
Keywords: parabolic equation; finite element method; Crank-Nicolson method; new error estimate
@article{10_21136_MB_2014_143841,
     author = {Bradji, Abdallah and Fuhrmann, J\"urgen},
     title = {A new error estimate for a fully finite element discretization scheme for parabolic equations using {Crank-Nicolson} method},
     journal = {Mathematica Bohemica},
     pages = {113--124},
     publisher = {mathdoc},
     volume = {139},
     number = {2},
     year = {2014},
     doi = {10.21136/MB.2014.143841},
     mrnumber = {3238827},
     zbl = {06362246},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143841/}
}
TY  - JOUR
AU  - Bradji, Abdallah
AU  - Fuhrmann, Jürgen
TI  - A new error estimate for a fully finite element discretization scheme for parabolic equations using Crank-Nicolson method
JO  - Mathematica Bohemica
PY  - 2014
SP  - 113
EP  - 124
VL  - 139
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143841/
DO  - 10.21136/MB.2014.143841
LA  - en
ID  - 10_21136_MB_2014_143841
ER  - 
%0 Journal Article
%A Bradji, Abdallah
%A Fuhrmann, Jürgen
%T A new error estimate for a fully finite element discretization scheme for parabolic equations using Crank-Nicolson method
%J Mathematica Bohemica
%D 2014
%P 113-124
%V 139
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143841/
%R 10.21136/MB.2014.143841
%G en
%F 10_21136_MB_2014_143841
Bradji, Abdallah; Fuhrmann, Jürgen. A new error estimate for a fully finite element discretization scheme for parabolic equations using Crank-Nicolson method. Mathematica Bohemica, Tome 139 (2014) no. 2, pp. 113-124. doi : 10.21136/MB.2014.143841. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143841/

Cité par Sources :