Uniqueness of entire functions concerning difference polynomials
Mathematica Bohemica, Tome 139 (2014) no. 1, pp. 89-97.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we investigate the uniqueness problem of difference polynomials sharing a small function. With the notions of weakly weighted sharing and relaxed weighted sharing we prove the following: Let $f(z)$ and $g(z)$ be two transcendental entire functions of finite order, and $\alpha (z)$ a small function with respect to both $f(z)$ and $g(z)$. Suppose that $c$ is a non-zero complex constant and $n\geq 7$ (or $n\geq 10$) is an integer. If $f^{n}(z)(f(z)-1)f(z+c)$ and $g^{n}(z)(g(z)-1)g(z+c)$ share “$(\alpha (z),2)$” (or $(\alpha (z),2)^{*}$), then $f(z)\equiv g(z)$. Our results extend and generalize some well known previous results.
DOI : 10.21136/MB.2014.143638
Classification : 30D35, 39A05
Keywords: entire function; difference polynomial; uniqueness
@article{10_21136_MB_2014_143638,
     author = {Meng, Chao},
     title = {Uniqueness of entire functions concerning difference polynomials},
     journal = {Mathematica Bohemica},
     pages = {89--97},
     publisher = {mathdoc},
     volume = {139},
     number = {1},
     year = {2014},
     doi = {10.21136/MB.2014.143638},
     mrnumber = {3231431},
     zbl = {06362244},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143638/}
}
TY  - JOUR
AU  - Meng, Chao
TI  - Uniqueness of entire functions concerning difference polynomials
JO  - Mathematica Bohemica
PY  - 2014
SP  - 89
EP  - 97
VL  - 139
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143638/
DO  - 10.21136/MB.2014.143638
LA  - en
ID  - 10_21136_MB_2014_143638
ER  - 
%0 Journal Article
%A Meng, Chao
%T Uniqueness of entire functions concerning difference polynomials
%J Mathematica Bohemica
%D 2014
%P 89-97
%V 139
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143638/
%R 10.21136/MB.2014.143638
%G en
%F 10_21136_MB_2014_143638
Meng, Chao. Uniqueness of entire functions concerning difference polynomials. Mathematica Bohemica, Tome 139 (2014) no. 1, pp. 89-97. doi : 10.21136/MB.2014.143638. http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143638/

Cité par Sources :