Necessary conditions for the $L^{p}$-convergence $(0$ of single and double trigonometric series
Mathematica Bohemica, Tome 139 (2014) no. 1, pp. 75-88.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give necessary conditions in terms of the coefficients for the convergence of a double trigonometric series in the $L^{p}$-metric, where $0$. The results and their proofs have been motivated by the recent papers of A. S. Belov (2008) and F. Móricz (2010). Our basic tools in the proofs are the Hardy-Littlewood inequality for functions in $H^{p}$ and the Bernstein-Zygmund inequalities for the derivatives of trigonometric polynomials and their conjugates in the $L^{p}$-metric, where $0$.
DOI : 10.21136/MB.2014.143637
Classification : 42A16, 42A20, 42A32, 42B05, 42B30, 42B99
Keywords: trigonometric series; Hardy-Littlewood inequality for functions in $H^{p}$; Bernstein-Zygmund inequalities for the derivative of trigonometric polynomials in $L^{p}$-metric for $0
@article{10_21136_MB_2014_143637,
     author = {Krasniqi, Xhevat Z. and K\'orus, P\'eter and M\'oricz, Ferenc},
     title = {Necessary conditions for the $L^{p}$-convergence $(0<p<1)$ of single and double trigonometric series},
     journal = {Mathematica Bohemica},
     pages = {75--88},
     publisher = {mathdoc},
     volume = {139},
     number = {1},
     year = {2014},
     doi = {10.21136/MB.2014.143637},
     mrnumber = {3231430},
     zbl = {06362243},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143637/}
}
TY  - JOUR
AU  - Krasniqi, Xhevat Z.
AU  - Kórus, Péter
AU  - Móricz, Ferenc
TI  - Necessary conditions for the $L^{p}$-convergence $(0
JO  - Mathematica Bohemica
PY  - 2014
SP  - 75
EP  - 88
VL  - 139
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143637/
DO  - 10.21136/MB.2014.143637
LA  - en
ID  - 10_21136_MB_2014_143637
ER  - 
%0 Journal Article
%A Krasniqi, Xhevat Z.
%A Kórus, Péter
%A Móricz, Ferenc
%T Necessary conditions for the $L^{p}$-convergence $(0
%J Mathematica Bohemica
%D 2014
%P 75-88
%V 139
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2014.143637/
%R 10.21136/MB.2014.143637
%G en
%F 10_21136_MB_2014_143637
Krasniqi, Xhevat Z.; Kórus, Péter; Móricz, Ferenc. Necessary conditions for the $L^{p}$-convergence $(0
                  
                

Cité par Sources :