The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbb {R}^3 $: spatial decay of the velocity
Mathematica Bohemica, Tome 138 (2013) no. 3, pp. 299-324.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the homogeneous time-dependent Oseen system in the whole space $ \mathbb {R}^3 $. The initial data is assumed to behave as $O(|x|^{-1- \epsilon })$, and its gradient as $O(|x|^{-3/2- \epsilon })$, when $|x|$ tends to infinity, where $\epsilon $ is a fixed positive number. Then we show that the velocity $u$ decays according to the equation $|u(x,t)|=O(|x|^{-1})$, and its spatial gradient $\nabla _xu$ decreases with the rate $|x|^{-3/2}$, for $|x|$ tending to infinity, uniformly with respect to the time variable $t$. Since these decay rates are optimal even in the stationary case, they should also be the best possible in the evolutionary case considered in this article. We also treat the case $\epsilon =0$. Then the preceding decay rates of $u$ remain valid, but they are no longer uniform with respect to $t$.
DOI : 10.21136/MB.2013.143439
Classification : 35B25, 35Q30, 35Q35, 65N30, 76D05
Keywords: Cauchy problem; time-dependent Oseen system; spatial decay; wake
@article{10_21136_MB_2013_143439,
     author = {Deuring, Paul},
     title = {The {Cauchy} problem for the homogeneous time-dependent {Oseen} system in $ \mathbb {R}^3 $: spatial decay of the velocity},
     journal = {Mathematica Bohemica},
     pages = {299--324},
     publisher = {mathdoc},
     volume = {138},
     number = {3},
     year = {2013},
     doi = {10.21136/MB.2013.143439},
     mrnumber = {3136499},
     zbl = {06260035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143439/}
}
TY  - JOUR
AU  - Deuring, Paul
TI  - The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbb {R}^3 $: spatial decay of the velocity
JO  - Mathematica Bohemica
PY  - 2013
SP  - 299
EP  - 324
VL  - 138
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143439/
DO  - 10.21136/MB.2013.143439
LA  - en
ID  - 10_21136_MB_2013_143439
ER  - 
%0 Journal Article
%A Deuring, Paul
%T The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbb {R}^3 $: spatial decay of the velocity
%J Mathematica Bohemica
%D 2013
%P 299-324
%V 138
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143439/
%R 10.21136/MB.2013.143439
%G en
%F 10_21136_MB_2013_143439
Deuring, Paul. The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbb {R}^3 $: spatial decay of the velocity. Mathematica Bohemica, Tome 138 (2013) no. 3, pp. 299-324. doi : 10.21136/MB.2013.143439. http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143439/

Cité par Sources :