$\mathcal Z$-distributive function lattices
Mathematica Bohemica, Tome 138 (2013) no. 3, pp. 259-287.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is known that for a nonempty topological space $X$ and a nonsingleton complete lattice $Y$ endowed with the Scott topology, the partially ordered set $[X,Y]$ of all continuous functions from $X$ into $Y$ is a continuous lattice if and only if both $Y$ and the open set lattice $\mathcal O X$ are continuous lattices. This result extends to certain classes of $\mathcal Z$-distributive lattices, where $\mathcal Z$ is a subset system replacing the system $\mathcal D$ of all directed subsets (for which the $\mathcal D$-distributive complete lattices are just the continuous ones). In particular, it is shown that if $[X,Y]$ is a complete lattice then it is supercontinuous (i.e.\^^Mcompletely distributive) iff both $Y$ and $\mathcal O X$ are supercontinuous. Moreover, the Scott topology on $Y$ is the only one making that equivalence true for all spaces $X$ with completely distributive topology. On the way to these results, we find necessary and sufficient conditions for $[X,Y]$ to be complete, and some new, purely topological characterizations of continuous lattices by continuity conditions on their (infinitary) lattice operations.
DOI : 10.21136/MB.2013.143437
Classification : 06B35, 06D10, 06F30, 54F05, 54H10
Keywords: completely distributive lattice; continuous function; continuous lattice; Scott topology; subset system; $\mathcal Z$-continuous; $\mathcal Z$-distributive
@article{10_21136_MB_2013_143437,
     author = {Ern\'e, Marcel},
     title = {$\mathcal Z$-distributive function lattices},
     journal = {Mathematica Bohemica},
     pages = {259--287},
     publisher = {mathdoc},
     volume = {138},
     number = {3},
     year = {2013},
     doi = {10.21136/MB.2013.143437},
     mrnumber = {3136497},
     zbl = {06260033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143437/}
}
TY  - JOUR
AU  - Erné, Marcel
TI  - $\mathcal Z$-distributive function lattices
JO  - Mathematica Bohemica
PY  - 2013
SP  - 259
EP  - 287
VL  - 138
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143437/
DO  - 10.21136/MB.2013.143437
LA  - en
ID  - 10_21136_MB_2013_143437
ER  - 
%0 Journal Article
%A Erné, Marcel
%T $\mathcal Z$-distributive function lattices
%J Mathematica Bohemica
%D 2013
%P 259-287
%V 138
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143437/
%R 10.21136/MB.2013.143437
%G en
%F 10_21136_MB_2013_143437
Erné, Marcel. $\mathcal Z$-distributive function lattices. Mathematica Bohemica, Tome 138 (2013) no. 3, pp. 259-287. doi : 10.21136/MB.2013.143437. http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143437/

Cité par Sources :