Remarks on star covering properties in pseudocompact spaces
Mathematica Bohemica, Tome 138 (2013) no. 2, pp. 165-169.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $P$ be a topological property. A space $X$ is said to be star $P$ if whenever $\mathcal U$ is an open cover of $X$, there exists a subspace $A\subseteq X$ with property $P$ such that $X=\mathop {\rm St}(A,\mathcal U)$, where $\mathop {\rm St}(A,\mathcal U)=\bigcup \{U\in \mathcal U\colon U\cap A\neq \emptyset \}.$ In this paper, we study the relationships of star $P$ properties for $P\in \{\textrm{Lindelöf, compact, countably compact}\}$ in pseudocompact spaces by giving some examples.
DOI : 10.21136/MB.2013.143288
Classification : 54A25, 54D20
Keywords: Lindelöf; star Lindelöf; compact; star compact; countably compact; star countably compact space
@article{10_21136_MB_2013_143288,
     author = {Song, Yan-Kui},
     title = {Remarks on star covering properties in pseudocompact spaces},
     journal = {Mathematica Bohemica},
     pages = {165--169},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2013},
     doi = {10.21136/MB.2013.143288},
     mrnumber = {3112362},
     zbl = {06221246},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143288/}
}
TY  - JOUR
AU  - Song, Yan-Kui
TI  - Remarks on star covering properties in pseudocompact spaces
JO  - Mathematica Bohemica
PY  - 2013
SP  - 165
EP  - 169
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143288/
DO  - 10.21136/MB.2013.143288
LA  - en
ID  - 10_21136_MB_2013_143288
ER  - 
%0 Journal Article
%A Song, Yan-Kui
%T Remarks on star covering properties in pseudocompact spaces
%J Mathematica Bohemica
%D 2013
%P 165-169
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143288/
%R 10.21136/MB.2013.143288
%G en
%F 10_21136_MB_2013_143288
Song, Yan-Kui. Remarks on star covering properties in pseudocompact spaces. Mathematica Bohemica, Tome 138 (2013) no. 2, pp. 165-169. doi : 10.21136/MB.2013.143288. http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143288/

Cité par Sources :