Partition sensitivity for measurable maps
Mathematica Bohemica, Tome 138 (2013) no. 2, pp. 133-148.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study countable partitions for measurable maps on measure spaces such that, for every point $x$, the set of points with the same itinerary as that of $x$ is negligible. We prove in nonatomic probability spaces that every strong generator (Parry, W., Aperiodic transformations and generators, J. London Math. Soc. 43 (1968), 191–194) satisfies this property (but not conversely). In addition, measurable maps carrying partitions with this property are aperiodic and their corresponding spaces are nonatomic. From this we obtain a characterization of nonsingular countable-to-one mappings with these partitions on nonatomic Lebesgue probability spaces as those having strong generators. Furthermore, maps carrying these partitions include ergodic measure-preserving ones with positive entropy on probability spaces (thus extending the result in Cadre, B., Jacob, P., On pairwise sensitivity, J. Math. Anal. Appl. 309 (2005), 375–382). Some applications are given.
DOI : 10.21136/MB.2013.143286
Classification : 37A25, 37A40
Keywords: measurable map; measure space; expansive map
@article{10_21136_MB_2013_143286,
     author = {Morales, C. A.},
     title = {Partition sensitivity for measurable maps},
     journal = {Mathematica Bohemica},
     pages = {133--148},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2013},
     doi = {10.21136/MB.2013.143286},
     mrnumber = {3112360},
     zbl = {06221244},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143286/}
}
TY  - JOUR
AU  - Morales, C. A.
TI  - Partition sensitivity for measurable maps
JO  - Mathematica Bohemica
PY  - 2013
SP  - 133
EP  - 148
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143286/
DO  - 10.21136/MB.2013.143286
LA  - en
ID  - 10_21136_MB_2013_143286
ER  - 
%0 Journal Article
%A Morales, C. A.
%T Partition sensitivity for measurable maps
%J Mathematica Bohemica
%D 2013
%P 133-148
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143286/
%R 10.21136/MB.2013.143286
%G en
%F 10_21136_MB_2013_143286
Morales, C. A. Partition sensitivity for measurable maps. Mathematica Bohemica, Tome 138 (2013) no. 2, pp. 133-148. doi : 10.21136/MB.2013.143286. http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143286/

Cité par Sources :