Oscillation of third-order half-linear neutral difference equations
Mathematica Bohemica, Tome 138 (2013) no. 1, pp. 87-104.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Some new criteria for the oscillation of third order nonlinear neutral difference equations of the form \begin {equation*} \Delta (a_n(\Delta ^2(x_n+b_{n}x_{n-\delta }))^\alpha )+q_{n}x^{\alpha }_{n+1-\tau }=0 \end {equation*} and \begin {equation*} \Delta (a_n(\Delta ^2(x_n-b_nx_{n-\delta }))^\alpha )+q_nx^{\alpha }_{n+1-\tau }=0 \end {equation*} are established. Some examples are presented to illustrate the main results.
DOI : 10.21136/MB.2013.143232
Classification : 39A10, 39A21
Keywords: third order neutral difference equation; oscillation; nonoscillation
@article{10_21136_MB_2013_143232,
     author = {Thandapani, E. and Selvarangam, S.},
     title = {Oscillation of third-order half-linear neutral difference equations},
     journal = {Mathematica Bohemica},
     pages = {87--104},
     publisher = {mathdoc},
     volume = {138},
     number = {1},
     year = {2013},
     doi = {10.21136/MB.2013.143232},
     mrnumber = {3076223},
     zbl = {1274.39023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143232/}
}
TY  - JOUR
AU  - Thandapani, E.
AU  - Selvarangam, S.
TI  - Oscillation of third-order half-linear neutral difference equations
JO  - Mathematica Bohemica
PY  - 2013
SP  - 87
EP  - 104
VL  - 138
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143232/
DO  - 10.21136/MB.2013.143232
LA  - en
ID  - 10_21136_MB_2013_143232
ER  - 
%0 Journal Article
%A Thandapani, E.
%A Selvarangam, S.
%T Oscillation of third-order half-linear neutral difference equations
%J Mathematica Bohemica
%D 2013
%P 87-104
%V 138
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143232/
%R 10.21136/MB.2013.143232
%G en
%F 10_21136_MB_2013_143232
Thandapani, E.; Selvarangam, S. Oscillation of third-order half-linear neutral difference equations. Mathematica Bohemica, Tome 138 (2013) no. 1, pp. 87-104. doi : 10.21136/MB.2013.143232. http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143232/

Cité par Sources :