On non-periodic groups whose finitely generated subgroups are either permutable or pronormal
Mathematica Bohemica, Tome 138 (2013) no. 1, pp. 61-74.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The current article considers some infinite groups whose finitely generated subgroups are either permutable or pronormal. A group $G$ is called a generalized radical, if $G$ has an ascending series whose factors are locally nilpotent or locally finite. The class of locally generalized radical groups is quite wide. For instance, it includes all locally finite, locally soluble, and almost locally soluble groups. The main result of this paper is the following\endgraf Theorem. Let $G$ be a locally generalized radical group whose finitely generated subgroups are either pronormal or permutable. If $G$ is non-periodic then every subgroup of $G$ is permutable.
DOI : 10.21136/MB.2013.143230
Classification : 20E07, 20E15, 20E25, 20E34, 20F14, 20F19, 20F22
Keywords: pronormal subgroup; permutable subgroup; finitely generated subgroup; abnormal subgroup
@article{10_21136_MB_2013_143230,
     author = {Kurdachenko, L. A. and Subbotin, I. Ya. and Ermolkevich, T. I.},
     title = {On non-periodic groups whose finitely generated subgroups are either permutable or pronormal},
     journal = {Mathematica Bohemica},
     pages = {61--74},
     publisher = {mathdoc},
     volume = {138},
     number = {1},
     year = {2013},
     doi = {10.21136/MB.2013.143230},
     mrnumber = {3076221},
     zbl = {1264.20029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143230/}
}
TY  - JOUR
AU  - Kurdachenko, L. A.
AU  - Subbotin, I. Ya.
AU  - Ermolkevich, T. I.
TI  - On non-periodic groups whose finitely generated subgroups are either permutable or pronormal
JO  - Mathematica Bohemica
PY  - 2013
SP  - 61
EP  - 74
VL  - 138
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143230/
DO  - 10.21136/MB.2013.143230
LA  - en
ID  - 10_21136_MB_2013_143230
ER  - 
%0 Journal Article
%A Kurdachenko, L. A.
%A Subbotin, I. Ya.
%A Ermolkevich, T. I.
%T On non-periodic groups whose finitely generated subgroups are either permutable or pronormal
%J Mathematica Bohemica
%D 2013
%P 61-74
%V 138
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143230/
%R 10.21136/MB.2013.143230
%G en
%F 10_21136_MB_2013_143230
Kurdachenko, L. A.; Subbotin, I. Ya.; Ermolkevich, T. I. On non-periodic groups whose finitely generated subgroups are either permutable or pronormal. Mathematica Bohemica, Tome 138 (2013) no. 1, pp. 61-74. doi : 10.21136/MB.2013.143230. http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143230/

Cité par Sources :