Cores and shells of graphs
Mathematica Bohemica, Tome 138 (2013) no. 1, pp. 43-59.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The $k$-core of a graph $G$, $C_{k}(G)$, is the maximal induced subgraph $H\subseteq G$ such that $\delta (G)\geq k$, if it exists. For $k>0$, the $k$-shell of a graph $G$ is the subgraph of $G$ induced by the edges contained in the $k$-core and not contained in the $(k+1)$-core. The core number of a vertex is the largest value for $k$ such that $v\in C_{k}(G)$, and the maximum core number of a graph, $\widehat {C}(G)$, is the maximum of the core numbers of the vertices of $G$. A graph $G$ is $k$-monocore if $\widehat {C}(G)=\delta (G)=k$. \endgraf This paper discusses some basic results on the structure of $k$-cores and $k$-shells. In particular, an operation characterization of 2-monocore graphs is proven. Some applications of cores and shells to graph coloring and domination are considered.
DOI : 10.21136/MB.2013.143229
Classification : 05C15, 05C69, 05C75
Keywords: $k$-core; $k$-shell; monocore; coloring; domination
@article{10_21136_MB_2013_143229,
     author = {Bickle, Allan},
     title = {Cores and shells of graphs},
     journal = {Mathematica Bohemica},
     pages = {43--59},
     publisher = {mathdoc},
     volume = {138},
     number = {1},
     year = {2013},
     doi = {10.21136/MB.2013.143229},
     mrnumber = {3076220},
     zbl = {1274.05399},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143229/}
}
TY  - JOUR
AU  - Bickle, Allan
TI  - Cores and shells of graphs
JO  - Mathematica Bohemica
PY  - 2013
SP  - 43
EP  - 59
VL  - 138
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143229/
DO  - 10.21136/MB.2013.143229
LA  - en
ID  - 10_21136_MB_2013_143229
ER  - 
%0 Journal Article
%A Bickle, Allan
%T Cores and shells of graphs
%J Mathematica Bohemica
%D 2013
%P 43-59
%V 138
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143229/
%R 10.21136/MB.2013.143229
%G en
%F 10_21136_MB_2013_143229
Bickle, Allan. Cores and shells of graphs. Mathematica Bohemica, Tome 138 (2013) no. 1, pp. 43-59. doi : 10.21136/MB.2013.143229. http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143229/

Cité par Sources :