Groupoids assigned to relational systems
Mathematica Bohemica, Tome 138 (2013) no. 1, pp. 15-23.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By a relational system we mean a couple $(A,R)$ where $A$ is a set and $R$ is a binary relation on $A$, i.e.\ $R\subseteq A\times A$. To every directed relational system $\mathcal {A}=(A,R)$ we assign a groupoid ${\mathcal G}({\mathcal A})=(A,\cdot )$ on the same base set where $xy=y$ if and only if $(x,y)\in R$. We characterize basic properties of $R$ by means of identities satisfied by ${\mathcal G}({\mathcal A})$ and show how homomorphisms between those groupoids are related to certain homomorphisms of relational systems.
DOI : 10.21136/MB.2013.143226
Classification : 08A02, 20N02
Keywords: relational system; groupoid; directed system; $g$-homomorphism
@article{10_21136_MB_2013_143226,
     author = {Chajda, Ivan and L\"anger, Helmut},
     title = {Groupoids assigned to relational systems},
     journal = {Mathematica Bohemica},
     pages = {15--23},
     publisher = {mathdoc},
     volume = {138},
     number = {1},
     year = {2013},
     doi = {10.21136/MB.2013.143226},
     mrnumber = {3076217},
     zbl = {1274.08002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143226/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Länger, Helmut
TI  - Groupoids assigned to relational systems
JO  - Mathematica Bohemica
PY  - 2013
SP  - 15
EP  - 23
VL  - 138
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143226/
DO  - 10.21136/MB.2013.143226
LA  - en
ID  - 10_21136_MB_2013_143226
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Länger, Helmut
%T Groupoids assigned to relational systems
%J Mathematica Bohemica
%D 2013
%P 15-23
%V 138
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143226/
%R 10.21136/MB.2013.143226
%G en
%F 10_21136_MB_2013_143226
Chajda, Ivan; Länger, Helmut. Groupoids assigned to relational systems. Mathematica Bohemica, Tome 138 (2013) no. 1, pp. 15-23. doi : 10.21136/MB.2013.143226. http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143226/

Cité par Sources :