Monadic $\boldsymbol n\boldsymbol \times \boldsymbol m$-valued Łukasiewicz-Moisil algebras
Mathematica Bohemica, Tome 137 (2012) no. 4, pp. 425-447.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Here we initiate an investigation into the class $\boldsymbol m\boldsymbol L\boldsymbol M_{\boldsymbol n\boldsymbol \times \boldsymbol m}$ of monadic $n\times m$-valued Łukasiewicz-Moisil algebras (or $mLM_{n \times m}$-algebras), namely $n\times m$-valued Łukasiewicz-Moisil algebras endowed with a unary operation. These algebras constitute a generalization of monadic $n$-valued Łukasiewicz-Moisil algebras. In this article, the congruences on these algebras are determined and subdirectly irreducible algebras are characterized. From this last result it is proved that $\boldsymbol m\boldsymbol L\boldsymbol M_{\boldsymbol n\boldsymbol \times \boldsymbol m}$ is a discriminator variety and as a consequence, the principal congruences are characterized. Furthermore, the number of congruences of finite $mLM_{n \times m}$-algebras is computed. In addition, a topological duality for $mLM_{n \times m}$-algebras is described and a characterization of $mLM_{n \times m}$-congruences in terms of special subsets of the associated space is shown. Moreover, the subsets which correspond to principal congruences are determined. Finally, some functional representation theorems for these algebras are given and the relationship between them is pointed out.
DOI : 10.21136/MB.2012.142998
Classification : 03G20, 06D30
Keywords: $n$-valued Łukasiewicz-Moisil algebra; monadic $n$-valued Łukasiewicz-Moisil algebra; congruence; subdirectly irreducible algebra; discriminator variety; Priestley space
@article{10_21136_MB_2012_142998,
     author = {Figallo, A. V. and Sanza, C.},
     title = {Monadic $\boldsymbol n\boldsymbol \times \boldsymbol m$-valued {{\L}ukasiewicz-Moisil} algebras},
     journal = {Mathematica Bohemica},
     pages = {425--447},
     publisher = {mathdoc},
     volume = {137},
     number = {4},
     year = {2012},
     doi = {10.21136/MB.2012.142998},
     mrnumber = {3058274},
     zbl = {1274.03104},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142998/}
}
TY  - JOUR
AU  - Figallo, A. V.
AU  - Sanza, C.
TI  - Monadic $\boldsymbol n\boldsymbol \times \boldsymbol m$-valued Łukasiewicz-Moisil algebras
JO  - Mathematica Bohemica
PY  - 2012
SP  - 425
EP  - 447
VL  - 137
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142998/
DO  - 10.21136/MB.2012.142998
LA  - en
ID  - 10_21136_MB_2012_142998
ER  - 
%0 Journal Article
%A Figallo, A. V.
%A Sanza, C.
%T Monadic $\boldsymbol n\boldsymbol \times \boldsymbol m$-valued Łukasiewicz-Moisil algebras
%J Mathematica Bohemica
%D 2012
%P 425-447
%V 137
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142998/
%R 10.21136/MB.2012.142998
%G en
%F 10_21136_MB_2012_142998
Figallo, A. V.; Sanza, C. Monadic $\boldsymbol n\boldsymbol \times \boldsymbol m$-valued Łukasiewicz-Moisil algebras. Mathematica Bohemica, Tome 137 (2012) no. 4, pp. 425-447. doi : 10.21136/MB.2012.142998. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142998/

Cité par Sources :