Mean-value theorem for vector-valued functions
Mathematica Bohemica, Tome 137 (2012) no. 4, pp. 415-423.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a differentiable function ${\bf f}\colon I\rightarrow \mathbb {R}^{k},$ where $I$ is a real interval and $k\in \mathbb {N}$, a counterpart of the Lagrange mean-value theorem is presented. Necessary and sufficient conditions for the existence of a mean $M\colon I^{2}\rightarrow I$ such that$$ {\bf f}(x)-{\bf f}( y) =( x-y) {\bf f}'( M(x,y)) ,\quad x,y\in I, $$ are given. Similar considerations for a theorem accompanying the Lagrange mean-value theorem are presented.
DOI : 10.21136/MB.2012.142997
Classification : 26A24, 26E60
Keywords: Lagrange mean-value theorem; mean; Darboux property of derivative; vector-valued function
@article{10_21136_MB_2012_142997,
     author = {Matkowski, Janusz},
     title = {Mean-value theorem for vector-valued functions},
     journal = {Mathematica Bohemica},
     pages = {415--423},
     publisher = {mathdoc},
     volume = {137},
     number = {4},
     year = {2012},
     doi = {10.21136/MB.2012.142997},
     mrnumber = {3058273},
     zbl = {1274.26009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142997/}
}
TY  - JOUR
AU  - Matkowski, Janusz
TI  - Mean-value theorem for vector-valued functions
JO  - Mathematica Bohemica
PY  - 2012
SP  - 415
EP  - 423
VL  - 137
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142997/
DO  - 10.21136/MB.2012.142997
LA  - en
ID  - 10_21136_MB_2012_142997
ER  - 
%0 Journal Article
%A Matkowski, Janusz
%T Mean-value theorem for vector-valued functions
%J Mathematica Bohemica
%D 2012
%P 415-423
%V 137
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142997/
%R 10.21136/MB.2012.142997
%G en
%F 10_21136_MB_2012_142997
Matkowski, Janusz. Mean-value theorem for vector-valued functions. Mathematica Bohemica, Tome 137 (2012) no. 4, pp. 415-423. doi : 10.21136/MB.2012.142997. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142997/

Cité par Sources :