On the intersection of two distinct $k$-generalized Fibonacci sequences
Mathematica Bohemica, Tome 137 (2012) no. 4, pp. 403-413.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $k\geq 2$ and define $F^{(k)}:=(F_n^{(k)})_{n\geq 0}$, the $k$-generalized Fibonacci sequence whose terms satisfy the recurrence relation $F_n^{(k)}=F_{n-1}^{(k)}+F_{n-2}^{(k)}+\cdots + F_{n-k}^{(k)}$, with initial conditions $0,0,\dots ,0,1$ ($k$ terms) and such that the first nonzero term is $F_1^{(k)}=1$. The sequences $F:=F^{(2)}$ and $T:=F^{(3)}$ are the known Fibonacci and Tribonacci sequences, respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of the Diophantine equation $F_n^{(k)}=F_m^{(\ell )}$. In this note, we use transcendental tools to provide a general method for finding the intersections $F^{(k)}\cap F^{(m)}$ which gives evidence supporting the Noe-Post conjecture. In particular, we prove that $F\cap T=\{0,1,2,13\}$.
DOI : 10.21136/MB.2012.142996
Classification : 11B39, 11D61, 11J86
Keywords: $k$-generalized Fibonacci numbers; linear forms in logarithms; reduction method
@article{10_21136_MB_2012_142996,
     author = {Marques, Diego},
     title = {On the intersection of two distinct $k$-generalized {Fibonacci} sequences},
     journal = {Mathematica Bohemica},
     pages = {403--413},
     publisher = {mathdoc},
     volume = {137},
     number = {4},
     year = {2012},
     doi = {10.21136/MB.2012.142996},
     mrnumber = {3058272},
     zbl = {1258.11026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142996/}
}
TY  - JOUR
AU  - Marques, Diego
TI  - On the intersection of two distinct $k$-generalized Fibonacci sequences
JO  - Mathematica Bohemica
PY  - 2012
SP  - 403
EP  - 413
VL  - 137
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142996/
DO  - 10.21136/MB.2012.142996
LA  - en
ID  - 10_21136_MB_2012_142996
ER  - 
%0 Journal Article
%A Marques, Diego
%T On the intersection of two distinct $k$-generalized Fibonacci sequences
%J Mathematica Bohemica
%D 2012
%P 403-413
%V 137
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142996/
%R 10.21136/MB.2012.142996
%G en
%F 10_21136_MB_2012_142996
Marques, Diego. On the intersection of two distinct $k$-generalized Fibonacci sequences. Mathematica Bohemica, Tome 137 (2012) no. 4, pp. 403-413. doi : 10.21136/MB.2012.142996. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142996/

Cité par Sources :