Base-base paracompactness and subsets of the Sorgenfrey line
Mathematica Bohemica, Tome 137 (2012) no. 4, pp. 395-401.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A topological space $X$ is called base-base paracompact (John E. Porter) if it has an open base $\mathcal B$ such that every base ${\mathcal B' \subseteq \mathcal B}$ has a locally finite subcover $\mathcal C \subseteq \mathcal B'$. It is not known if every paracompact space is base-base paracompact. We study subspaces of the Sorgenfrey line (e.g. the irrationals, a Bernstein set) as a possible counterexample.
DOI : 10.21136/MB.2012.142995
Classification : 03E15, 26A21, 28A05, 54D20, 54D70, 54F05, 54G20, 54H05
Keywords: base-base paracompact space; coarse base; Sorgenfrey irrationals; totally imperfect set
@article{10_21136_MB_2012_142995,
     author = {Popvassilev, Strashimir G.},
     title = {Base-base paracompactness and subsets of the {Sorgenfrey} line},
     journal = {Mathematica Bohemica},
     pages = {395--401},
     publisher = {mathdoc},
     volume = {137},
     number = {4},
     year = {2012},
     doi = {10.21136/MB.2012.142995},
     mrnumber = {3058271},
     zbl = {1274.54075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142995/}
}
TY  - JOUR
AU  - Popvassilev, Strashimir G.
TI  - Base-base paracompactness and subsets of the Sorgenfrey line
JO  - Mathematica Bohemica
PY  - 2012
SP  - 395
EP  - 401
VL  - 137
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142995/
DO  - 10.21136/MB.2012.142995
LA  - en
ID  - 10_21136_MB_2012_142995
ER  - 
%0 Journal Article
%A Popvassilev, Strashimir G.
%T Base-base paracompactness and subsets of the Sorgenfrey line
%J Mathematica Bohemica
%D 2012
%P 395-401
%V 137
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142995/
%R 10.21136/MB.2012.142995
%G en
%F 10_21136_MB_2012_142995
Popvassilev, Strashimir G. Base-base paracompactness and subsets of the Sorgenfrey line. Mathematica Bohemica, Tome 137 (2012) no. 4, pp. 395-401. doi : 10.21136/MB.2012.142995. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142995/

Cité par Sources :