On Kurzweil-Stieltjes integral in a Banach space
Mathematica Bohemica, Tome 137 (2012) no. 4, pp. 365-381.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper we deal with the Kurzweil-Stieltjes integration of functions having values in a Banach space $X.$ We extend results obtained by Štefan Schwabik and complete the theory so that it will be well applicable to prove results on the continuous dependence of solutions to generalized linear differential equations in a Banach space. By Schwabik, the integral $\int _a^b {\rm d}[F]g$ exists if $F\colon [a,b]\to L(X)$ has a bounded semi-variation on $[a,b]$ and $g\colon [a,b]\to X$ is regulated on $[a,b].$ We prove that this integral has sense also if $F$ is regulated on $[a,b]$ and $g$ has a bounded semi-variation on $[a,b].$ Furthermore, the integration by parts theorem is presented under the assumptions not covered by Schwabik (2001) and Naralenkov (2004), and the substitution formula is proved.
DOI : 10.21136/MB.2012.142992
Classification : 26A39, 28B05
Keywords: Kurzweil-Stieltjes integral; substitution formula; integration-by-parts
@article{10_21136_MB_2012_142992,
     author = {Monteiro, Giselle A. and Tvrd\'y, Milan},
     title = {On {Kurzweil-Stieltjes} integral in a {Banach} space},
     journal = {Mathematica Bohemica},
     pages = {365--381},
     publisher = {mathdoc},
     volume = {137},
     number = {4},
     year = {2012},
     doi = {10.21136/MB.2012.142992},
     mrnumber = {3058269},
     zbl = {1274.26014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142992/}
}
TY  - JOUR
AU  - Monteiro, Giselle A.
AU  - Tvrdý, Milan
TI  - On Kurzweil-Stieltjes integral in a Banach space
JO  - Mathematica Bohemica
PY  - 2012
SP  - 365
EP  - 381
VL  - 137
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142992/
DO  - 10.21136/MB.2012.142992
LA  - en
ID  - 10_21136_MB_2012_142992
ER  - 
%0 Journal Article
%A Monteiro, Giselle A.
%A Tvrdý, Milan
%T On Kurzweil-Stieltjes integral in a Banach space
%J Mathematica Bohemica
%D 2012
%P 365-381
%V 137
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142992/
%R 10.21136/MB.2012.142992
%G en
%F 10_21136_MB_2012_142992
Monteiro, Giselle A.; Tvrdý, Milan. On Kurzweil-Stieltjes integral in a Banach space. Mathematica Bohemica, Tome 137 (2012) no. 4, pp. 365-381. doi : 10.21136/MB.2012.142992. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142992/

Cité par Sources :