Monotone modal operators on bounded integral residuated lattices
Mathematica Bohemica, Tome 137 (2012) no. 3, pp. 333-345.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Bounded integral residuated lattices form a large class of algebras containing some classes of commutative and noncommutative algebras behind many-valued and fuzzy logics. In the paper, monotone modal operators (special cases of closure operators) are introduced and studied.
DOI : 10.21136/MB.2012.142898
Classification : 03G25, 06D35, 06F05
Keywords: residuated lattice; bounded integral residuated lattice; modal operator; closure operator
@article{10_21136_MB_2012_142898,
     author = {Rach\r{u}nek, Ji\v{r}{\'\i} and Svoboda, Zden\v{e}k},
     title = {Monotone modal operators on bounded integral residuated lattices},
     journal = {Mathematica Bohemica},
     pages = {333--345},
     publisher = {mathdoc},
     volume = {137},
     number = {3},
     year = {2012},
     doi = {10.21136/MB.2012.142898},
     mrnumber = {3112491},
     zbl = {1265.03085},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142898/}
}
TY  - JOUR
AU  - Rachůnek, Jiří
AU  - Svoboda, Zdeněk
TI  - Monotone modal operators on bounded integral residuated lattices
JO  - Mathematica Bohemica
PY  - 2012
SP  - 333
EP  - 345
VL  - 137
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142898/
DO  - 10.21136/MB.2012.142898
LA  - en
ID  - 10_21136_MB_2012_142898
ER  - 
%0 Journal Article
%A Rachůnek, Jiří
%A Svoboda, Zdeněk
%T Monotone modal operators on bounded integral residuated lattices
%J Mathematica Bohemica
%D 2012
%P 333-345
%V 137
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142898/
%R 10.21136/MB.2012.142898
%G en
%F 10_21136_MB_2012_142898
Rachůnek, Jiří; Svoboda, Zdeněk. Monotone modal operators on bounded integral residuated lattices. Mathematica Bohemica, Tome 137 (2012) no. 3, pp. 333-345. doi : 10.21136/MB.2012.142898. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142898/

Cité par Sources :