On the localization of the spectrum for quasi-selfadjoint extensions of a Carleman operator
Mathematica Bohemica, Tome 137 (2012) no. 3, pp. 249-258.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the present work, using a formula describing all scalar spectral functions of a Carleman operator $A$ of defect indices $( 1,1) $ in the Hilbert space $L^{2}( X,\mu ) $ that we obtained in a previous paper, we derive certain results concerning the localization of the spectrum of quasi-selfadjoint extensions of the operator $A$.
DOI : 10.21136/MB.2012.142892
Classification : 45C05, 45P05, 47B25, 58C40
Keywords: defect indices; integral operator; quasi-selfadjoint extension; spectral theory
@article{10_21136_MB_2012_142892,
     author = {Bahri, S. M.},
     title = {On the localization of the spectrum for quasi-selfadjoint extensions of a {Carleman} operator},
     journal = {Mathematica Bohemica},
     pages = {249--258},
     publisher = {mathdoc},
     volume = {137},
     number = {3},
     year = {2012},
     doi = {10.21136/MB.2012.142892},
     mrnumber = {3112486},
     zbl = {1265.45001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142892/}
}
TY  - JOUR
AU  - Bahri, S. M.
TI  - On the localization of the spectrum for quasi-selfadjoint extensions of a Carleman operator
JO  - Mathematica Bohemica
PY  - 2012
SP  - 249
EP  - 258
VL  - 137
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142892/
DO  - 10.21136/MB.2012.142892
LA  - en
ID  - 10_21136_MB_2012_142892
ER  - 
%0 Journal Article
%A Bahri, S. M.
%T On the localization of the spectrum for quasi-selfadjoint extensions of a Carleman operator
%J Mathematica Bohemica
%D 2012
%P 249-258
%V 137
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142892/
%R 10.21136/MB.2012.142892
%G en
%F 10_21136_MB_2012_142892
Bahri, S. M. On the localization of the spectrum for quasi-selfadjoint extensions of a Carleman operator. Mathematica Bohemica, Tome 137 (2012) no. 3, pp. 249-258. doi : 10.21136/MB.2012.142892. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142892/

Cité par Sources :