Asymptotic properties of one differential equation with unbounded delay
Mathematica Bohemica, Tome 137 (2012) no. 2, pp. 239-248.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the asymptotic behavior of the solutions of a differential equation with unbounded delay. The results presented are based on the first Lyapunov method, which is often used to construct solutions of ordinary differential equations in the form of power series. This technique cannot be applied to delayed equations and hence we express the solution as an asymptotic expansion. The existence of a solution is proved by the retract method.
DOI : 10.21136/MB.2012.142869
Classification : 34A25, 34E05, 34K25, 47N20
Keywords: asymptotic expansion; retract method
@article{10_21136_MB_2012_142869,
     author = {Svoboda, Zden\v{e}k},
     title = {Asymptotic properties of one differential equation with unbounded delay},
     journal = {Mathematica Bohemica},
     pages = {239--248},
     publisher = {mathdoc},
     volume = {137},
     number = {2},
     year = {2012},
     doi = {10.21136/MB.2012.142869},
     mrnumber = {2978269},
     zbl = {1265.34274},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142869/}
}
TY  - JOUR
AU  - Svoboda, Zdeněk
TI  - Asymptotic properties of one differential equation with unbounded delay
JO  - Mathematica Bohemica
PY  - 2012
SP  - 239
EP  - 248
VL  - 137
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142869/
DO  - 10.21136/MB.2012.142869
LA  - en
ID  - 10_21136_MB_2012_142869
ER  - 
%0 Journal Article
%A Svoboda, Zdeněk
%T Asymptotic properties of one differential equation with unbounded delay
%J Mathematica Bohemica
%D 2012
%P 239-248
%V 137
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142869/
%R 10.21136/MB.2012.142869
%G en
%F 10_21136_MB_2012_142869
Svoboda, Zdeněk. Asymptotic properties of one differential equation with unbounded delay. Mathematica Bohemica, Tome 137 (2012) no. 2, pp. 239-248. doi : 10.21136/MB.2012.142869. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142869/

Cité par Sources :