Existence of global solutions to differential inclusions; a priori bounds
Mathematica Bohemica, Tome 137 (2012) no. 2, pp. 195-200.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper presents an existence result for global solutions to the finite dimensional differential inclusion $y' \in F( y) ,$ $F$ being defined on a closed set $K.$ A priori bounds for such solutions are provided.
DOI : 10.21136/MB.2012.142865
Classification : 34A60, 34C11
Keywords: differential inclusion; global solution; a priori bound
@article{10_21136_MB_2012_142865,
     author = {C\^arj\u{a}, Ovidiu and Lazu, Alina Ilinca},
     title = {Existence of global solutions to differential inclusions; a priori bounds},
     journal = {Mathematica Bohemica},
     pages = {195--200},
     publisher = {mathdoc},
     volume = {137},
     number = {2},
     year = {2012},
     doi = {10.21136/MB.2012.142865},
     mrnumber = {2978265},
     zbl = {1265.34044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142865/}
}
TY  - JOUR
AU  - Cârjă, Ovidiu
AU  - Lazu, Alina Ilinca
TI  - Existence of global solutions to differential inclusions; a priori bounds
JO  - Mathematica Bohemica
PY  - 2012
SP  - 195
EP  - 200
VL  - 137
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142865/
DO  - 10.21136/MB.2012.142865
LA  - en
ID  - 10_21136_MB_2012_142865
ER  - 
%0 Journal Article
%A Cârjă, Ovidiu
%A Lazu, Alina Ilinca
%T Existence of global solutions to differential inclusions; a priori bounds
%J Mathematica Bohemica
%D 2012
%P 195-200
%V 137
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142865/
%R 10.21136/MB.2012.142865
%G en
%F 10_21136_MB_2012_142865
Cârjă, Ovidiu; Lazu, Alina Ilinca. Existence of global solutions to differential inclusions; a priori bounds. Mathematica Bohemica, Tome 137 (2012) no. 2, pp. 195-200. doi : 10.21136/MB.2012.142865. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142865/

Cité par Sources :