Smooth bifurcation for a Signorini problem on a rectangle
Mathematica Bohemica, Tome 137 (2012) no. 2, pp. 131-138.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study a parameter depending semilinear elliptic PDE on a rectangle with Signorini boundary conditions on a part of one edge and mixed (zero Dirichlet and Neumann) boundary conditions on the rest of the boundary. We describe smooth branches of smooth nontrivial solutions bifurcating from the trivial solution branch in eigenvalues of the linearized problem. In particular, the contact sets of these nontrivial solutions are intervals which change smoothly along the branch. The main tools of the proof are first a certain local equivalence of the unilateral BVP to a system consisting of a corresponding classical BVP and of two scalar equations (which determine the ends of the contact intervals), and secondly an application of the classical Crandall-Rabinowitz type local bifurcation techniques (scaling and application of the Implicit Function Theorem) to that system.
DOI : 10.21136/MB.2012.142859
Classification : 35B32, 35J87, 47J07, 49J20
Keywords: Signorini problem; smooth bifurcation; variational inequality; boundary obstacle; Crandall-Rabinowitz type theorem
@article{10_21136_MB_2012_142859,
     author = {Eisner, Jan and Ku\v{c}era, Milan and Recke, Lutz},
     title = {Smooth bifurcation for a {Signorini} problem on a rectangle},
     journal = {Mathematica Bohemica},
     pages = {131--138},
     publisher = {mathdoc},
     volume = {137},
     number = {2},
     year = {2012},
     doi = {10.21136/MB.2012.142859},
     mrnumber = {2978259},
     zbl = {1265.35023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142859/}
}
TY  - JOUR
AU  - Eisner, Jan
AU  - Kučera, Milan
AU  - Recke, Lutz
TI  - Smooth bifurcation for a Signorini problem on a rectangle
JO  - Mathematica Bohemica
PY  - 2012
SP  - 131
EP  - 138
VL  - 137
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142859/
DO  - 10.21136/MB.2012.142859
LA  - en
ID  - 10_21136_MB_2012_142859
ER  - 
%0 Journal Article
%A Eisner, Jan
%A Kučera, Milan
%A Recke, Lutz
%T Smooth bifurcation for a Signorini problem on a rectangle
%J Mathematica Bohemica
%D 2012
%P 131-138
%V 137
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142859/
%R 10.21136/MB.2012.142859
%G en
%F 10_21136_MB_2012_142859
Eisner, Jan; Kučera, Milan; Recke, Lutz. Smooth bifurcation for a Signorini problem on a rectangle. Mathematica Bohemica, Tome 137 (2012) no. 2, pp. 131-138. doi : 10.21136/MB.2012.142859. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142859/

Cité par Sources :