Second order difference inclusions of monotone type
Mathematica Bohemica, Tome 137 (2012) no. 2, pp. 123-130.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The existence of anti-periodic solutions is studied for a second order difference inclusion associated with a maximal monotone operator in Hilbert spaces. It is the discrete analogue of a well-studied class of differential equations.
DOI : 10.21136/MB.2012.142858
Classification : 34A60, 34G25, 39A12, 39A23, 47H05
Keywords: anti-periodic solution; maximal monotone operator; Yosida approximation
@article{10_21136_MB_2012_142858,
     author = {Apreutesei, G. and Apreutesei, N.},
     title = {Second order difference inclusions of monotone type},
     journal = {Mathematica Bohemica},
     pages = {123--130},
     publisher = {mathdoc},
     volume = {137},
     number = {2},
     year = {2012},
     doi = {10.21136/MB.2012.142858},
     mrnumber = {2978258},
     zbl = {1265.39006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142858/}
}
TY  - JOUR
AU  - Apreutesei, G.
AU  - Apreutesei, N.
TI  - Second order difference inclusions of monotone type
JO  - Mathematica Bohemica
PY  - 2012
SP  - 123
EP  - 130
VL  - 137
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142858/
DO  - 10.21136/MB.2012.142858
LA  - en
ID  - 10_21136_MB_2012_142858
ER  - 
%0 Journal Article
%A Apreutesei, G.
%A Apreutesei, N.
%T Second order difference inclusions of monotone type
%J Mathematica Bohemica
%D 2012
%P 123-130
%V 137
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142858/
%R 10.21136/MB.2012.142858
%G en
%F 10_21136_MB_2012_142858
Apreutesei, G.; Apreutesei, N. Second order difference inclusions of monotone type. Mathematica Bohemica, Tome 137 (2012) no. 2, pp. 123-130. doi : 10.21136/MB.2012.142858. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142858/

Cité par Sources :