A generalization of semiflows on monomials
Mathematica Bohemica, Tome 137 (2012) no. 1, pp. 99-111.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $K$ be a field, $A=K[X_1,\dots , X_n]$ and $\mathbb {M}$ the set of monomials of $A$. It is well known that the set of monomial ideals of $A$ is in a bijective correspondence with the set of all subsemiflows of the $\mathbb {M}$-semiflow $\mathbb {M}$. We generalize this to the case of term ideals of $A=R[X_1,\dots , X_n]$, where $R$ is a commutative Noetherian ring. A term ideal of $A$ is an ideal of $A$ generated by a family of terms $cX_1^{\mu _1}\dots X_n^{\mu _n}$, where $c\in R$ and $\mu _1,\dots , \mu _n$ are integers $\geq 0$.
DOI : 10.21136/MB.2012.142790
Classification : 13A15, 13A99, 13F20, 37B05, 54H20
Keywords: monomial ideal; term ideal; Dickson's lemma; semiflow
@article{10_21136_MB_2012_142790,
     author = {Kulosman, Hamid and Miller, Alica},
     title = {A generalization of semiflows on monomials},
     journal = {Mathematica Bohemica},
     pages = {99--111},
     publisher = {mathdoc},
     volume = {137},
     number = {1},
     year = {2012},
     doi = {10.21136/MB.2012.142790},
     mrnumber = {2978448},
     zbl = {1249.37001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142790/}
}
TY  - JOUR
AU  - Kulosman, Hamid
AU  - Miller, Alica
TI  - A generalization of semiflows on monomials
JO  - Mathematica Bohemica
PY  - 2012
SP  - 99
EP  - 111
VL  - 137
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142790/
DO  - 10.21136/MB.2012.142790
LA  - en
ID  - 10_21136_MB_2012_142790
ER  - 
%0 Journal Article
%A Kulosman, Hamid
%A Miller, Alica
%T A generalization of semiflows on monomials
%J Mathematica Bohemica
%D 2012
%P 99-111
%V 137
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142790/
%R 10.21136/MB.2012.142790
%G en
%F 10_21136_MB_2012_142790
Kulosman, Hamid; Miller, Alica. A generalization of semiflows on monomials. Mathematica Bohemica, Tome 137 (2012) no. 1, pp. 99-111. doi : 10.21136/MB.2012.142790. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142790/

Cité par Sources :