Completely dissociative groupoids
Mathematica Bohemica, Tome 137 (2012) no. 1, pp. 79-97.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In a groupoid, consider arbitrarily parenthesized expressions on the $k$ variables $x_0, x_1, \dots x_{k-1}$ where each $x_i$ appears once and all variables appear in order of their indices. We call these expressions $k$-ary formal products, and denote the set containing all of them by $F^\sigma (k)$. If $u,v \in F^\sigma (k)$ are distinct, the statement that $u$ and $v$ are equal for all values of $x_0, x_1, \dots x_{k-1}$ is a generalized associative law. \endgraf Among other results, we show that many small groupoids are completely dissociative, meaning that no generalized associative law holds in them. These include the two groupoids on $\{ 0,1 \} $ where the groupoid operation is implication and NAND, respectively.
DOI : 10.21136/MB.2012.142789
Classification : 05A99, 08A99, 08B99, 08C10, 20N02
Keywords: groupoid; dissociative groupoid; generalized associative groupoid; formal product; reverse Polish notation (rPn)
@article{10_21136_MB_2012_142789,
     author = {Braitt, Milton and Hobby, David and Silberger, Donald},
     title = {Completely dissociative groupoids},
     journal = {Mathematica Bohemica},
     pages = {79--97},
     publisher = {mathdoc},
     volume = {137},
     number = {1},
     year = {2012},
     doi = {10.21136/MB.2012.142789},
     mrnumber = {2978447},
     zbl = {1249.20075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142789/}
}
TY  - JOUR
AU  - Braitt, Milton
AU  - Hobby, David
AU  - Silberger, Donald
TI  - Completely dissociative groupoids
JO  - Mathematica Bohemica
PY  - 2012
SP  - 79
EP  - 97
VL  - 137
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142789/
DO  - 10.21136/MB.2012.142789
LA  - en
ID  - 10_21136_MB_2012_142789
ER  - 
%0 Journal Article
%A Braitt, Milton
%A Hobby, David
%A Silberger, Donald
%T Completely dissociative groupoids
%J Mathematica Bohemica
%D 2012
%P 79-97
%V 137
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142789/
%R 10.21136/MB.2012.142789
%G en
%F 10_21136_MB_2012_142789
Braitt, Milton; Hobby, David; Silberger, Donald. Completely dissociative groupoids. Mathematica Bohemica, Tome 137 (2012) no. 1, pp. 79-97. doi : 10.21136/MB.2012.142789. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142789/

Cité par Sources :