The $k$-metric colorings of a graph
Mathematica Bohemica, Tome 137 (2012) no. 1, pp. 45-63.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a nontrivial connected graph $G$ of order $n$, the detour distance $D(u,v)$ between two vertices $u$ and $v$ in $G$ is the length of a longest $u-v$ path in $G$. Detour distance is a metric on the vertex set of $G$. For each integer $k$ with $1\le k\le n-1$, a coloring $c\colon V(G)\to \mathbb N$ is a $k$-metric coloring of $G$ if $|c(u)-c(v)|+D(u,v)\ge k+1$ for every two distinct vertices $u$ and $v$ of $G$. The value $\chi _m^k(c)$ of a $k$-metric coloring $c$ is the maximum color assigned by $c$ to a vertex of $G$ and the $k$-metric chromatic number $\chi _m^k(G)$ of $G$ is the minimum value of a $k$-metric coloring of $G$. For every nontrivial connected graph $G$ of order $n$, $\chi _m^1(G)\le \chi _m^2(G)\le \cdots \le \chi _m^{n-1}(G)$. Metric chromatic numbers provide a generalization of several well-studied coloring parameters in graphs. Upper and lower bounds have been established for $\chi _m^k(G)$ in terms of other graphical parameters of a graph $G$ and exact values of $k$-metric chromatic numbers have been determined for complete multipartite graphs and cycles. For a nontrivial connected graph $G$, the anti-diameter ${\rm adiam}(G)$ is the minimum detour distance between two vertices of $G$. We show that the ${\rm adiam}(G)$-metric chromatic number of a graph $G$ provides information on the Hamiltonian properties of the graph and investigate realization results and problems on this parameter.
DOI : 10.21136/MB.2012.142787
Classification : 05C12, 05C15, 05C78
Keywords: detour distance; metric coloring
@article{10_21136_MB_2012_142787,
     author = {Fujie-Okamoto, Futaba and Renzema, Willem and Zhang, Ping},
     title = {The $k$-metric colorings of a graph},
     journal = {Mathematica Bohemica},
     pages = {45--63},
     publisher = {mathdoc},
     volume = {137},
     number = {1},
     year = {2012},
     doi = {10.21136/MB.2012.142787},
     mrnumber = {2978445},
     zbl = {1249.05093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142787/}
}
TY  - JOUR
AU  - Fujie-Okamoto, Futaba
AU  - Renzema, Willem
AU  - Zhang, Ping
TI  - The $k$-metric colorings of a graph
JO  - Mathematica Bohemica
PY  - 2012
SP  - 45
EP  - 63
VL  - 137
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142787/
DO  - 10.21136/MB.2012.142787
LA  - en
ID  - 10_21136_MB_2012_142787
ER  - 
%0 Journal Article
%A Fujie-Okamoto, Futaba
%A Renzema, Willem
%A Zhang, Ping
%T The $k$-metric colorings of a graph
%J Mathematica Bohemica
%D 2012
%P 45-63
%V 137
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142787/
%R 10.21136/MB.2012.142787
%G en
%F 10_21136_MB_2012_142787
Fujie-Okamoto, Futaba; Renzema, Willem; Zhang, Ping. The $k$-metric colorings of a graph. Mathematica Bohemica, Tome 137 (2012) no. 1, pp. 45-63. doi : 10.21136/MB.2012.142787. http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142787/

Cité par Sources :