The stability analysis of a discretized pantograph equation
Mathematica Bohemica, Tome 136 (2011) no. 4, pp. 385-394.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper deals with a difference equation arising from the scalar pantograph equation via the backward Euler discretization. A case when the solution tends to zero but after reaching a certain index it loses this tendency is discussed. We analyse this problem and estimate the value of such an index. Furthermore, we show that the utilized proof technique enables us to investigate some other numerical formulae, too.
DOI : 10.21136/MB.2011.141698
Classification : 34K28, 39A06, 39A12, 39A30, 65L03, 65L05, 65L12, 65L20
Keywords: pantograph equation; numerical solution; stability
@article{10_21136_MB_2011_141698,
     author = {J\'ansk\'y, Ji\v{r}{\'\i} and Kundr\'at, Petr},
     title = {The stability analysis of a discretized pantograph equation},
     journal = {Mathematica Bohemica},
     pages = {385--394},
     publisher = {mathdoc},
     volume = {136},
     number = {4},
     year = {2011},
     doi = {10.21136/MB.2011.141698},
     mrnumber = {2985548},
     zbl = {1245.65103},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141698/}
}
TY  - JOUR
AU  - Jánský, Jiří
AU  - Kundrát, Petr
TI  - The stability analysis of a discretized pantograph equation
JO  - Mathematica Bohemica
PY  - 2011
SP  - 385
EP  - 394
VL  - 136
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141698/
DO  - 10.21136/MB.2011.141698
LA  - en
ID  - 10_21136_MB_2011_141698
ER  - 
%0 Journal Article
%A Jánský, Jiří
%A Kundrát, Petr
%T The stability analysis of a discretized pantograph equation
%J Mathematica Bohemica
%D 2011
%P 385-394
%V 136
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141698/
%R 10.21136/MB.2011.141698
%G en
%F 10_21136_MB_2011_141698
Jánský, Jiří; Kundrát, Petr. The stability analysis of a discretized pantograph equation. Mathematica Bohemica, Tome 136 (2011) no. 4, pp. 385-394. doi : 10.21136/MB.2011.141698. http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141698/

Cité par Sources :