Some estimates for the minimal eigenvalue of the Sturm-Liouville problem with third-type boundary conditions
Mathematica Bohemica, Tome 136 (2011) no. 4, pp. 377-384.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the Sturm-Liouville problem with symmetric boundary conditions and an integral condition. We estimate the first eigenvalue $\lambda _1$ of this problem for different values of the parameters.
DOI : 10.21136/MB.2011.141697
Classification : 34B24, 34L15
Keywords: Sturm-Liouville problem; minimal eigenvalue
@article{10_21136_MB_2011_141697,
     author = {Karulina, Elena},
     title = {Some estimates for the minimal eigenvalue of the {Sturm-Liouville} problem with third-type boundary conditions},
     journal = {Mathematica Bohemica},
     pages = {377--384},
     publisher = {mathdoc},
     volume = {136},
     number = {4},
     year = {2011},
     doi = {10.21136/MB.2011.141697},
     mrnumber = {2985547},
     zbl = {1249.34093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141697/}
}
TY  - JOUR
AU  - Karulina, Elena
TI  - Some estimates for the minimal eigenvalue of the Sturm-Liouville problem with third-type boundary conditions
JO  - Mathematica Bohemica
PY  - 2011
SP  - 377
EP  - 384
VL  - 136
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141697/
DO  - 10.21136/MB.2011.141697
LA  - en
ID  - 10_21136_MB_2011_141697
ER  - 
%0 Journal Article
%A Karulina, Elena
%T Some estimates for the minimal eigenvalue of the Sturm-Liouville problem with third-type boundary conditions
%J Mathematica Bohemica
%D 2011
%P 377-384
%V 136
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141697/
%R 10.21136/MB.2011.141697
%G en
%F 10_21136_MB_2011_141697
Karulina, Elena. Some estimates for the minimal eigenvalue of the Sturm-Liouville problem with third-type boundary conditions. Mathematica Bohemica, Tome 136 (2011) no. 4, pp. 377-384. doi : 10.21136/MB.2011.141697. http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141697/

Cité par Sources :