Some cohomological aspects of the Banach fixed point principle
Mathematica Bohemica, Tome 136 (2011) no. 3, pp. 333-336.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $T\colon X\to X$ be a continuous selfmap of a compact metrizable space $X$. We prove the equivalence of the following two statements: (1) The mapping $T$ is a Banach contraction relative to some compatible metric on $X$. (2) There is a countable point separating family $\mathcal {F}\subset \mathcal {C}(X)$ of non-negative functions $f\in \mathcal {C}(X)$ such that for every $f\in \mathcal {F}$ there is $g\in \mathcal {C}(X)$ with $f=g-g\circ T$.
DOI : 10.21136/MB.2011.141653
Classification : 54H20, 54H25
Keywords: Banach contraction; cohomology; cocycle; coboundary; separating family; core
@article{10_21136_MB_2011_141653,
     author = {Jano\v{s}, Ludv{\'\i}k},
     title = {Some cohomological aspects of the {Banach} fixed point principle},
     journal = {Mathematica Bohemica},
     pages = {333--336},
     publisher = {mathdoc},
     volume = {136},
     number = {3},
     year = {2011},
     doi = {10.21136/MB.2011.141653},
     mrnumber = {2893980},
     zbl = {1249.54081},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141653/}
}
TY  - JOUR
AU  - Janoš, Ludvík
TI  - Some cohomological aspects of the Banach fixed point principle
JO  - Mathematica Bohemica
PY  - 2011
SP  - 333
EP  - 336
VL  - 136
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141653/
DO  - 10.21136/MB.2011.141653
LA  - en
ID  - 10_21136_MB_2011_141653
ER  - 
%0 Journal Article
%A Janoš, Ludvík
%T Some cohomological aspects of the Banach fixed point principle
%J Mathematica Bohemica
%D 2011
%P 333-336
%V 136
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141653/
%R 10.21136/MB.2011.141653
%G en
%F 10_21136_MB_2011_141653
Janoš, Ludvík. Some cohomological aspects of the Banach fixed point principle. Mathematica Bohemica, Tome 136 (2011) no. 3, pp. 333-336. doi : 10.21136/MB.2011.141653. http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141653/

Cité par Sources :