A note on k-c-semistratifiable spaces and strong $\beta $-spaces
Mathematica Bohemica, Tome 136 (2011) no. 3, pp. 287-299.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Recall that a space $X$ is a c-semistratifiable (CSS) space, if the compact sets of $X$ are $G_\delta $-sets in a uniform way. In this note, we introduce another class of spaces, denoting it by k-c-semistratifiable (k-CSS), which generalizes the concept of c-semistratifiable. We discuss some properties of k-c-semistratifiable spaces. We prove that a $T_2$-space $X$ is a k-c-semistratifiable space if and only if $X$ has a $g$ function which satisfies the following conditions: (1) For each $x\in X$, $\{ x\}=\bigcap \{g(x, n)\colon n\in \mathbb {N}\}$ and $ g(x, n+1)\subseteq g(x, n)$ for each $n\in \mathbb {N}$. (2) If a sequence $\{x_n\}_{n\in \mathbb {N}}$ of $X$ converges to a point $x\in X$ and $y_n\in g(x_n, n)$ for each $n\in \mathbb {N}$, then for any convergent subsequence $\{y_{n_k}\}_{k\in \mathbb {N}}$ of $\{y_n\}_{n\in \mathbb {N}}$ we have that $\{y_{n_k}\}_{k\in \mathbb {N}}$ converges to $x$. By the above characterization, we show that if $X$ is a submesocompact locally k-c-semistratifiable space, then $X$ is a k-c-semistratifible space, and the countable product of k-c-semistratifiable spaces is a k-c-semistratifiable space. If $X=\bigcup \{{\rm Int}(X_n)\colon n\in \mathbb {N}\}$ and $X_n$ is a closed k-c-semistratifiable space for each $n$, then $X$ is a k-c-semistratifiable space. In the last part of this note, we show that if $X=\bigcup \{X_n\colon n\in \mathbb {N}\}$ and $X_n$ is a closed strong $\beta $-space for each $n\in \mathbb {N}$, then $X$ is a strong $\beta $-space.
DOI : 10.21136/MB.2011.141650
Classification : 54D20, 54E20
Keywords: c-semistratifiable space; k-c-semistratifiable space; submesocompact space; $g$ function; strong $\beta $-space
@article{10_21136_MB_2011_141650,
     author = {Wang, Li-Xia and Peng, Liang-Xue},
     title = {A note on k-c-semistratifiable spaces and strong $\beta $-spaces},
     journal = {Mathematica Bohemica},
     pages = {287--299},
     publisher = {mathdoc},
     volume = {136},
     number = {3},
     year = {2011},
     doi = {10.21136/MB.2011.141650},
     mrnumber = {2893977},
     zbl = {1249.54063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141650/}
}
TY  - JOUR
AU  - Wang, Li-Xia
AU  - Peng, Liang-Xue
TI  - A note on k-c-semistratifiable spaces and strong $\beta $-spaces
JO  - Mathematica Bohemica
PY  - 2011
SP  - 287
EP  - 299
VL  - 136
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141650/
DO  - 10.21136/MB.2011.141650
LA  - en
ID  - 10_21136_MB_2011_141650
ER  - 
%0 Journal Article
%A Wang, Li-Xia
%A Peng, Liang-Xue
%T A note on k-c-semistratifiable spaces and strong $\beta $-spaces
%J Mathematica Bohemica
%D 2011
%P 287-299
%V 136
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141650/
%R 10.21136/MB.2011.141650
%G en
%F 10_21136_MB_2011_141650
Wang, Li-Xia; Peng, Liang-Xue. A note on k-c-semistratifiable spaces and strong $\beta $-spaces. Mathematica Bohemica, Tome 136 (2011) no. 3, pp. 287-299. doi : 10.21136/MB.2011.141650. http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141650/

Cité par Sources :