Congruence kernels of distributive PJP-semilattices
Mathematica Bohemica, Tome 136 (2011) no. 3, pp. 225-239.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A meet semilattice with a partial join operation satisfying certain axioms is a JP-semilattice. A PJP-semilattice is a pseudocomplemented JP-semilattice. In this paper we describe the smallest PJP-congruence containing a kernel ideal as a class. Also we describe the largest PJP-congruence containing a filter as a class. Then we give several characterizations of congruence kernels and cokernels for distributive PJP-semilattices.
DOI : 10.21136/MB.2011.141645
Classification : 06A12, 06B10, 06B99, 06D15
Keywords: semilattice; distributivity; pseudocomplementation; congruence; kernel ideal; cokernel
@article{10_21136_MB_2011_141645,
     author = {Begum, S. N. and Noor, A. S. A.},
     title = {Congruence kernels of distributive {PJP-semilattices}},
     journal = {Mathematica Bohemica},
     pages = {225--239},
     publisher = {mathdoc},
     volume = {136},
     number = {3},
     year = {2011},
     doi = {10.21136/MB.2011.141645},
     mrnumber = {2893973},
     zbl = {1249.06004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141645/}
}
TY  - JOUR
AU  - Begum, S. N.
AU  - Noor, A. S. A.
TI  - Congruence kernels of distributive PJP-semilattices
JO  - Mathematica Bohemica
PY  - 2011
SP  - 225
EP  - 239
VL  - 136
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141645/
DO  - 10.21136/MB.2011.141645
LA  - en
ID  - 10_21136_MB_2011_141645
ER  - 
%0 Journal Article
%A Begum, S. N.
%A Noor, A. S. A.
%T Congruence kernels of distributive PJP-semilattices
%J Mathematica Bohemica
%D 2011
%P 225-239
%V 136
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141645/
%R 10.21136/MB.2011.141645
%G en
%F 10_21136_MB_2011_141645
Begum, S. N.; Noor, A. S. A. Congruence kernels of distributive PJP-semilattices. Mathematica Bohemica, Tome 136 (2011) no. 3, pp. 225-239. doi : 10.21136/MB.2011.141645. http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141645/

Cité par Sources :