Homogenization of quadratic complementary energies: a duality example
Mathematica Bohemica, Tome 136 (2011) no. 2, pp. 165-173.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study an example in two dimensions of a sequence of quadratic functionals whose limit energy density, in the sense of $\Gamma $-convergence, may be characterized as the dual function of the limit energy density of the sequence of their dual functionals. In this special case, $\Gamma $-convergence is indeed stable under the dual operator. If we perturb such quadratic functionals with linear terms this statement is no longer true.
DOI : 10.21136/MB.2011.141579
Classification : 35B27, 35J20
Keywords: $\Gamma $-convergence; oscillatory behaviour; Young measure; conjugate functional
@article{10_21136_MB_2011_141579,
     author = {Serrano, H\'elia},
     title = {Homogenization of quadratic complementary energies: a duality example},
     journal = {Mathematica Bohemica},
     pages = {165--173},
     publisher = {mathdoc},
     volume = {136},
     number = {2},
     year = {2011},
     doi = {10.21136/MB.2011.141579},
     mrnumber = {2856133},
     zbl = {1224.35025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141579/}
}
TY  - JOUR
AU  - Serrano, Hélia
TI  - Homogenization of quadratic complementary energies: a duality example
JO  - Mathematica Bohemica
PY  - 2011
SP  - 165
EP  - 173
VL  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141579/
DO  - 10.21136/MB.2011.141579
LA  - en
ID  - 10_21136_MB_2011_141579
ER  - 
%0 Journal Article
%A Serrano, Hélia
%T Homogenization of quadratic complementary energies: a duality example
%J Mathematica Bohemica
%D 2011
%P 165-173
%V 136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141579/
%R 10.21136/MB.2011.141579
%G en
%F 10_21136_MB_2011_141579
Serrano, Hélia. Homogenization of quadratic complementary energies: a duality example. Mathematica Bohemica, Tome 136 (2011) no. 2, pp. 165-173. doi : 10.21136/MB.2011.141579. http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141579/

Cité par Sources :