Stability and sliding modes for a class of nonlinear time delay systems
Mathematica Bohemica, Tome 136 (2011) no. 2, pp. 155-164.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The following time delay system $$ \dot {x} = Ax(t) + \sum _1^rbq_i^*x(t-\tau _i)-b\varphi (c^*x(t)) $$ is considered, where $\varphi \colon \mathbb {R}\to \mathbb {R}$ may have discontinuities, in particular at the origin. The solution is defined using the “redefined nonlinearity” concept. For such systems sliding modes are discussed and a frequency domain inequality for global asymptotic stability is given.
DOI : 10.21136/MB.2011.141578
Classification : 34A36, 34D20, 34K20, 93C23, 93D10
Keywords: time lag; extended nonlinearity; absolute stability
@article{10_21136_MB_2011_141578,
     author = {R\u{a}svan, Vladimir},
     title = {Stability and sliding modes for a class of nonlinear time delay systems},
     journal = {Mathematica Bohemica},
     pages = {155--164},
     publisher = {mathdoc},
     volume = {136},
     number = {2},
     year = {2011},
     doi = {10.21136/MB.2011.141578},
     mrnumber = {2856132},
     zbl = {1224.34246},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141578/}
}
TY  - JOUR
AU  - Răsvan, Vladimir
TI  - Stability and sliding modes for a class of nonlinear time delay systems
JO  - Mathematica Bohemica
PY  - 2011
SP  - 155
EP  - 164
VL  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141578/
DO  - 10.21136/MB.2011.141578
LA  - en
ID  - 10_21136_MB_2011_141578
ER  - 
%0 Journal Article
%A Răsvan, Vladimir
%T Stability and sliding modes for a class of nonlinear time delay systems
%J Mathematica Bohemica
%D 2011
%P 155-164
%V 136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141578/
%R 10.21136/MB.2011.141578
%G en
%F 10_21136_MB_2011_141578
Răsvan, Vladimir. Stability and sliding modes for a class of nonlinear time delay systems. Mathematica Bohemica, Tome 136 (2011) no. 2, pp. 155-164. doi : 10.21136/MB.2011.141578. http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141578/

Cité par Sources :