On solvability sets of boundary value problems for linear functional differential equations
Mathematica Bohemica, Tome 136 (2011) no. 2, pp. 145-154.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Consider boundary value problems for a functional differential equation $$\begin {cases} x^{(n)}(t) =(T^+x)(t)-(T^-x)(t)+f(t),\in [a,b],\\ l x=c, \end {cases} $$ where $T^{+},T^{-}\colon \bold C[a,b]\to \bold L[a,b]$ are positive linear operators; $l\colon \bold {AC}^{n-1}[a,b]\to \mathbb {R}^n$ is a linear bounded vector-functional, $f\in \bold L[a,b]$, $c\in \mathbb {R}^n$, $n\ge 2$. \endgraf Let the solvability set be the set of all points $({\mathcal T}^+,{\mathcal T}^-)\in \mathbb {R}_2^+$ such that for all operators $T^{+}$, $T^{-}$ with $\|T^{\pm }\|_{\bold C\to \bold L}={\mathcal T}^{\pm }$ the problems have a unique solution for every $f$ and $c$. A method of finding the solvability sets are proposed. Some new properties of these sets are obtained in various cases. We continue the investigations of the solvability sets started in R. Hakl, A. Lomtatidze, J. Šremr: Some boundary value problems for first order scalar functional differential equations. Folia Mathematica 10, Brno, 2002.
DOI : 10.21136/MB.2011.141577
Classification : 34K06, 34K10, 34K13
Keywords: functional differential equation; boundary value problem; periodic problem
@article{10_21136_MB_2011_141577,
     author = {Bravyi, Eugene},
     title = {On solvability sets of boundary value problems for linear functional differential equations},
     journal = {Mathematica Bohemica},
     pages = {145--154},
     publisher = {mathdoc},
     volume = {136},
     number = {2},
     year = {2011},
     doi = {10.21136/MB.2011.141577},
     mrnumber = {2856131},
     zbl = {1224.34208},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141577/}
}
TY  - JOUR
AU  - Bravyi, Eugene
TI  - On solvability sets of boundary value problems for linear functional differential equations
JO  - Mathematica Bohemica
PY  - 2011
SP  - 145
EP  - 154
VL  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141577/
DO  - 10.21136/MB.2011.141577
LA  - en
ID  - 10_21136_MB_2011_141577
ER  - 
%0 Journal Article
%A Bravyi, Eugene
%T On solvability sets of boundary value problems for linear functional differential equations
%J Mathematica Bohemica
%D 2011
%P 145-154
%V 136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141577/
%R 10.21136/MB.2011.141577
%G en
%F 10_21136_MB_2011_141577
Bravyi, Eugene. On solvability sets of boundary value problems for linear functional differential equations. Mathematica Bohemica, Tome 136 (2011) no. 2, pp. 145-154. doi : 10.21136/MB.2011.141577. http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141577/

Cité par Sources :