Preservation of exponential stability for equations with several delays
Mathematica Bohemica, Tome 136 (2011) no. 2, pp. 135-144.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider preservation of exponential stability for the scalar nonoscillatory linear equation with several delays $$ \dot {x}(t) + \sum _{k=1}^m a_k(t) x(h_k(t)) = 0, \quad a_k(t) \geq 0 $$ under the addition of new terms and a delay perturbation. We assume that the original equation has a positive fundamental function; our method is based on Bohl-Perron type theorems. Explicit stability conditions are obtained.
DOI : 10.21136/MB.2011.141576
Classification : 34K06, 34K20, 34K27, 47N20
Keywords: exponential stability; nonoscillation; explicit stability condition; perturbation
@article{10_21136_MB_2011_141576,
     author = {Berezansky, Leonid and Braverman, Elena},
     title = {Preservation of exponential stability for equations with several delays},
     journal = {Mathematica Bohemica},
     pages = {135--144},
     publisher = {mathdoc},
     volume = {136},
     number = {2},
     year = {2011},
     doi = {10.21136/MB.2011.141576},
     mrnumber = {2856129},
     zbl = {1224.34240},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141576/}
}
TY  - JOUR
AU  - Berezansky, Leonid
AU  - Braverman, Elena
TI  - Preservation of exponential stability for equations with several delays
JO  - Mathematica Bohemica
PY  - 2011
SP  - 135
EP  - 144
VL  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141576/
DO  - 10.21136/MB.2011.141576
LA  - en
ID  - 10_21136_MB_2011_141576
ER  - 
%0 Journal Article
%A Berezansky, Leonid
%A Braverman, Elena
%T Preservation of exponential stability for equations with several delays
%J Mathematica Bohemica
%D 2011
%P 135-144
%V 136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141576/
%R 10.21136/MB.2011.141576
%G en
%F 10_21136_MB_2011_141576
Berezansky, Leonid; Braverman, Elena. Preservation of exponential stability for equations with several delays. Mathematica Bohemica, Tome 136 (2011) no. 2, pp. 135-144. doi : 10.21136/MB.2011.141576. http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141576/

Cité par Sources :