Some characterizations of order weakly compact operator
Mathematica Bohemica, Tome 136 (2011) no. 1, pp. 105-112.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce the notion of order weakly sequentially continuous lattice operations of a Banach lattice, use it to generalize a result regarding the characterization of order weakly compact operators, and establish its converse. Also, we derive some interesting consequences.
DOI : 10.21136/MB.2011.141454
Classification : 46A40, 46B40, 46B42, 47B07, 47B60
Keywords: order weakly compact operator; order continuous norm; discrete Banach lattice; weakly sequentially continuous lattice operations
@article{10_21136_MB_2011_141454,
     author = {Aqzzouz, Belmesnaoui and Elbour, Aziz},
     title = {Some characterizations of order weakly compact operator},
     journal = {Mathematica Bohemica},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {136},
     number = {1},
     year = {2011},
     doi = {10.21136/MB.2011.141454},
     mrnumber = {2807713},
     zbl = {1224.46035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141454/}
}
TY  - JOUR
AU  - Aqzzouz, Belmesnaoui
AU  - Elbour, Aziz
TI  - Some characterizations of order weakly compact operator
JO  - Mathematica Bohemica
PY  - 2011
SP  - 105
EP  - 112
VL  - 136
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141454/
DO  - 10.21136/MB.2011.141454
LA  - en
ID  - 10_21136_MB_2011_141454
ER  - 
%0 Journal Article
%A Aqzzouz, Belmesnaoui
%A Elbour, Aziz
%T Some characterizations of order weakly compact operator
%J Mathematica Bohemica
%D 2011
%P 105-112
%V 136
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141454/
%R 10.21136/MB.2011.141454
%G en
%F 10_21136_MB_2011_141454
Aqzzouz, Belmesnaoui; Elbour, Aziz. Some characterizations of order weakly compact operator. Mathematica Bohemica, Tome 136 (2011) no. 1, pp. 105-112. doi : 10.21136/MB.2011.141454. http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141454/

Cité par Sources :