B-Fredholm and Drazin invertible operators through localized SVEP
Mathematica Bohemica, Tome 136 (2011) no. 1, pp. 39-49.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a Banach space and $T$ be a bounded linear operator on $X$. We denote by $S(T)$ the set of all complex $\lambda \in \mathbb C$ such that $T$ does not have the single-valued extension property at $\lambda $. In this note we prove equality up to $S(T)$ between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum. As applications, we investigate generalized Weyl's theorem for operator matrices and multiplier operators.
DOI : 10.21136/MB.2011.141448
Classification : 47A10, 47A11, 47A53, 47A55
Keywords: B-Fredholm operator; Drazin invertible operator; single-valued extension property
@article{10_21136_MB_2011_141448,
     author = {Amouch, M. and Zguitti, H.},
     title = {B-Fredholm and {Drazin} invertible operators through localized {SVEP}},
     journal = {Mathematica Bohemica},
     pages = {39--49},
     publisher = {mathdoc},
     volume = {136},
     number = {1},
     year = {2011},
     doi = {10.21136/MB.2011.141448},
     mrnumber = {2807707},
     zbl = {1216.47018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141448/}
}
TY  - JOUR
AU  - Amouch, M.
AU  - Zguitti, H.
TI  - B-Fredholm and Drazin invertible operators through localized SVEP
JO  - Mathematica Bohemica
PY  - 2011
SP  - 39
EP  - 49
VL  - 136
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141448/
DO  - 10.21136/MB.2011.141448
LA  - en
ID  - 10_21136_MB_2011_141448
ER  - 
%0 Journal Article
%A Amouch, M.
%A Zguitti, H.
%T B-Fredholm and Drazin invertible operators through localized SVEP
%J Mathematica Bohemica
%D 2011
%P 39-49
%V 136
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141448/
%R 10.21136/MB.2011.141448
%G en
%F 10_21136_MB_2011_141448
Amouch, M.; Zguitti, H. B-Fredholm and Drazin invertible operators through localized SVEP. Mathematica Bohemica, Tome 136 (2011) no. 1, pp. 39-49. doi : 10.21136/MB.2011.141448. http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141448/

Cité par Sources :