A simple proof of Whitney's Theorem on connectivity in graphs
Mathematica Bohemica, Tome 136 (2011) no. 1, pp. 25-26.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In 1932 Whitney showed that a graph $G$ with order $n\geq 3$ is 2-connected if and only if any two vertices of $G$ are connected by at least two internally-disjoint paths. The above result and its proof have been used in some Graph Theory books, such as in Bondy and Murty's well-known Graph Theory with Applications. In this note we give a much simple proof of Whitney's Theorem.
DOI : 10.21136/MB.2011.141446
Classification : 05C38, 05C40, 05C45
Keywords: connectivity; graph
@article{10_21136_MB_2011_141446,
     author = {Zhao, Kewen},
     title = {A simple proof of {Whitney's} {Theorem} on connectivity in graphs},
     journal = {Mathematica Bohemica},
     pages = {25--26},
     publisher = {mathdoc},
     volume = {136},
     number = {1},
     year = {2011},
     doi = {10.21136/MB.2011.141446},
     mrnumber = {2807705},
     zbl = {1224.05278},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141446/}
}
TY  - JOUR
AU  - Zhao, Kewen
TI  - A simple proof of Whitney's Theorem on connectivity in graphs
JO  - Mathematica Bohemica
PY  - 2011
SP  - 25
EP  - 26
VL  - 136
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141446/
DO  - 10.21136/MB.2011.141446
LA  - en
ID  - 10_21136_MB_2011_141446
ER  - 
%0 Journal Article
%A Zhao, Kewen
%T A simple proof of Whitney's Theorem on connectivity in graphs
%J Mathematica Bohemica
%D 2011
%P 25-26
%V 136
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141446/
%R 10.21136/MB.2011.141446
%G en
%F 10_21136_MB_2011_141446
Zhao, Kewen. A simple proof of Whitney's Theorem on connectivity in graphs. Mathematica Bohemica, Tome 136 (2011) no. 1, pp. 25-26. doi : 10.21136/MB.2011.141446. http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141446/

Cité par Sources :