Operators approximating partial derivatives at vertices of triangulations by averaging
Mathematica Bohemica, Tome 135 (2010) no. 4, pp. 363-372.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathcal T_h$ be a triangulation of a bounded polygonal domain $\Omega \subset \Re ^2$, $\mathcal L_h$ the space of the functions from $C(\overline \Omega )$ linear on the triangles from $\mathcal T_h$ and $\Pi _h$ the interpolation operator from $C(\overline \Omega )$ to $\mathcal L_h$. For a unit vector $z$ and an inner vertex $a$ of $\mathcal T_h$, we describe the set of vectors of coefficients such that the related linear combinations of the constant derivatives $\partial \Pi _h(u)/\partial z$ on the triangles surrounding $a$ are equal to $\partial u/\partial z(a)$ for all polynomials $u$ of the total degree less than or equal to two. Then we prove that, generally, the values of the so-called recovery operators approximating the gradient $\nabla u(a)$ cannot be expressed as linear combinations of the constant gradients $\nabla \Pi _h(u)$ on the triangles surrounding $a$.
DOI : 10.21136/MB.2010.140827
Classification : 65D25
Keywords: partial derivative; high-order approximation; recovery operator
@article{10_21136_MB_2010_140827,
     author = {Dal{\'\i}k, Josef},
     title = {Operators approximating partial derivatives at vertices of triangulations by averaging},
     journal = {Mathematica Bohemica},
     pages = {363--372},
     publisher = {mathdoc},
     volume = {135},
     number = {4},
     year = {2010},
     doi = {10.21136/MB.2010.140827},
     mrnumber = {2681010},
     zbl = {1224.65057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140827/}
}
TY  - JOUR
AU  - Dalík, Josef
TI  - Operators approximating partial derivatives at vertices of triangulations by averaging
JO  - Mathematica Bohemica
PY  - 2010
SP  - 363
EP  - 372
VL  - 135
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140827/
DO  - 10.21136/MB.2010.140827
LA  - en
ID  - 10_21136_MB_2010_140827
ER  - 
%0 Journal Article
%A Dalík, Josef
%T Operators approximating partial derivatives at vertices of triangulations by averaging
%J Mathematica Bohemica
%D 2010
%P 363-372
%V 135
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140827/
%R 10.21136/MB.2010.140827
%G en
%F 10_21136_MB_2010_140827
Dalík, Josef. Operators approximating partial derivatives at vertices of triangulations by averaging. Mathematica Bohemica, Tome 135 (2010) no. 4, pp. 363-372. doi : 10.21136/MB.2010.140827. http://geodesic.mathdoc.fr/articles/10.21136/MB.2010.140827/

Cité par Sources :